Skip to main content
Log in

Piezoelectric properties of new ternary Bi1/2(Na, Li)1/2TiO3–(Bi1/2K1/2)TiO3–Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

0.852[Bi1/2(Na1−x Li x )1/2]TiO3–0.110(Bi1/2K1/2)TiO3–0.038Ba0.85Ca0.15Ti0.90Zr0.10O3 (BNLT–BKT–BCTZ-x) new ternary piezoelectric ceramics were fabricated by the conventional solid-state method, and their piezoelectric properties as a function of the Li content were mainly investigated. A stable solid solution with a single perovskite structure has been formed, and the depolarization temperature (T d) of these ceramics was identified by using the temperature dependence of the dielectric loss. The T d value of these ceramics gradually decreases, while the T m value increases with increasing the Li content. The dielectric constant increases and the dielectric loss decreases with increasing the Li content, and an enhanced piezoelectric behavior of d 33∼223 pC/N and k p∼35.2 % has been demonstrated in these ceramics with x=0.06.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  2. S.E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997)

    Article  ADS  Google Scholar 

  3. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  ADS  Google Scholar 

  4. T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT. J. Electroceram. 19, 111–124 (2007)

    Google Scholar 

  5. T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25(12), 2693–2700 (2005)

    Article  Google Scholar 

  6. J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  Google Scholar 

  7. G.A. Smolenskii, A.I. Agranovskaya, Dielectric polarization of a number of complex compounds. Sov. Phys., Solid State 1(10), 1429–1437 (1960)

    Google Scholar 

  8. M.R. Suchomel, A.M. Fogg, M. Allix, H.J. Niu, J.B. Claridge, M.J. Rosseinsky, Bi2ZnTiO6: a lead-free closed-shell polar perovskite with a calculated ionic polarization of 150 μC/cm2. Chem. Mater. 18(21), 4987–4989 (2006)

    Article  Google Scholar 

  9. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys., Part 1 38(9B), 5564–5567 (1999)

    Article  Google Scholar 

  10. O. Elkechai, M. Manier, J.P. Mercurio, Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) system: a structural and electrical studies. Phys. Status Solidi A 157, 499–506 (1996)

    Article  ADS  Google Scholar 

  11. Z. Yang, B. Liu, L. Wei, Y. Hou, Structure and electrical properties of (1−x)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater. Res. Bull. 43, 81–89 (2008)

    Article  Google Scholar 

  12. K. Yoshii, Y. Hiruma, H. Nagatha, T. Takenaka, Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 45, 4493–4496 (2006)

    Article  ADS  Google Scholar 

  13. T. Takenaka, H. Nagata, Y. Hiruma, Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3- and (Bi1/2K1/2)TiO3-based bismuth perovskite lead-free ferroelectric ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1595–1612 (2009)

    Article  Google Scholar 

  14. Y. Hiruma, H. Nagatha, T. Takenaka, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solution. J. Appl. Phys. 104, 124106 (2008)

    Article  ADS  Google Scholar 

  15. P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, J. Hao, Piezoelectric, ferroelectric and dielectric properties of Sm2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Mater. Chem. Phys. 124, 1065–1070 (2010)

    Article  Google Scholar 

  16. C. Zhou, X. Liu, W. Li, C. Yuan, Structure and piezoelectric properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–BiFeO3 lead-free piezoelectric ceramics. Mater. Chem. Phys. 114, 832–836 (2009)

    Article  Google Scholar 

  17. R. Zuo, S. Su, Y. Wu, J. Fu, M. Wang, L. Li, Influence of A-site nonstoichiometry on sintering, microstructure and electrical properties of (Bi0.5Na0.5)TiO3 ceramics. Mater. Chem. Phys. 110, 311–315 (2008)

    Article  Google Scholar 

  18. P. Fu, Z. Xu, R. Chu, W. Li, W. Wang, Y. Liu, Gd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics. Mater. Des. 35, 276–280 (2011)

    Article  Google Scholar 

  19. W.F. Liu, X.B. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)

    Article  ADS  Google Scholar 

  20. D. Damjanovic, A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl. Phys. Lett. 97, 062906 (2010)

    Article  ADS  Google Scholar 

  21. J.G. Wu, D.Q. Xiao, W.J. Wu, Q. Chen, J.G. Zhu, Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1−x Zr x )O3 lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 32(4), 891–898 (2012)

    Article  Google Scholar 

  22. Y.J. Dai, X.W. Zhang, K.P. Chen, An approach to improve the piezoelectric property of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 lead-free ceramics. Int. J. Appl. Ceram. Technol. 8(2), 423–429 (2011)

    Article  Google Scholar 

  23. Y.J. Dai, S. Zhang, T.R. Shrout, X.W. Zhang, Piezoelectric and ferroelectric properties of Li-doped (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93(4), 1108–1113 (2010)

    Article  Google Scholar 

  24. D. Lin, D. Xiao, J. Zhu, P. Yu, Piezoelectric and ferroelectric properties of lead-free [Bi1−y (Na1−xy Li x )0.5Ba y TiO3 ceramics. J. Eur. Ceram. Soc. 26, 3247–3251 (2006)

    Article  Google Scholar 

  25. D.M. Lin, C.G. Xu, Q.J. Zheng, Y.J. Wei, D.J. Gao, Piezoelectric and dielectric properties of Bi0.5Na0.5TiO3–Bi0.5Li0.5TiO3 lead-free ceramics. J. Mater. Sci., Mater. Electron. 20, 393–397 (2009)

    Article  Google Scholar 

  26. Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3 ceramics. Jpn. J. Appl. Phys. 44, 5040–5044 (2005)

    Article  ADS  Google Scholar 

  27. Y. Hiruma, H. Nagata, T. Takenaka, Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 lead-free piezoelectric ceramics. Jpn. J. Appl. Phys., Part 1(45), 7409–7412 (2006)

    Article  ADS  Google Scholar 

  28. Y. Liao, D. Xiao, Synthesis and electrical properties of Li-modified Bi0.5Na0.5TiO3–BaTiO3 lead-free piezoelectric ceramics. J. Mater. Sci. Technol. 25, 777–780 (2009)

    Article  Google Scholar 

  29. F. Xia, X. Yao, Effect of thermal annealing on the dielectric properties of Pb(Zn1/3Nb2/3)O3-based ceramics. J. Mater. Res. 14, 1683–1685 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Dr. Jiagang Wu gratefully acknowledges the support of the introduction of talent start funds of Sichuan University (2082204144033), the National Science Foundation of China (NSFC Nos. 51102173, 50772068, and 50972001), and the Fundamental Research Funds for the Central Universities (2012SCU04A01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiagang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Qiao, S., Zhu, J. et al. Piezoelectric properties of new ternary Bi1/2(Na, Li)1/2TiO3–(Bi1/2K1/2)TiO3–Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics. Appl. Phys. A 109, 273–277 (2012). https://doi.org/10.1007/s00339-012-7297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7297-4

Keywords

Navigation