Skip to main content

Effects of deposition temperature and hydrogen flow rate on the properties of the Al-doped ZnO thin films and amorphous silicon thin-film solar cells

Abstract

A compound of 98 mol% ZnO and 1 mol% Al2O3 (AZO, Al:Zn = 98:2) was sintered at 1350 °C as a target and the AZO thin films were deposited on glass using a radio frequency magnetron sputtering system. The effects of deposition temperature (from room temperature to ∼300 °C) on the optical transmission spectrum of the AZO thin films were studied. The Burstein–Moss shift was observed and used to prove that defects in the AZO thin films decreased with increasing deposition temperature. The variations in the optical band gap (E g) values of the AZO thin films were evaluated from plots of (αhv)2=c(E g), revealing that the measured E g values increased with increasing deposition temperature. The effects of the H2 flow rate during deposition (0 %∼11.76 %, deposition temperature of 200 °C) on the crystallization, morphology, resistivity, carrier concentration, carrier mobility, and optical transmission spectrum of the AZO thin films were measured. The chemical structures of the Ar-deposited and 2 % H2-flow rate-deposited AZO thin films (both were deposited at 200 °C) were investigated by XPS to clarify the mechanism of improvement in resistivity. The prepared AZO thin films were also used as transparent electrodes to fabricate amorphous silicon thin-film solar cells, and their properties were also measured.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. S. Major, S. Kumar, M. Bhatnagar, K.L. Chopra, Appl. Phys. Lett. 49, 394 (1986)

    ADS  Article  Google Scholar 

  2. L. Stolt, J. HedstriSm, J. Kessler, M. Ruckh, K.O. Velthans, H.W. Schock, Appl. Phys. Lett. 62, 597 (1993)

    ADS  Article  Google Scholar 

  3. K. Belghit, M.A. Subhan, U. Riilhe, S. Duchemin, J. Bougnot, in 10th EC Photovoltaic Solar Energy Conference, Lisboa, Potugal (1991), p. 613

    Chapter  Google Scholar 

  4. D.H. Zhang, D.E. Brodie, Thin Solid Films 238, 95 (1994)

    ADS  Article  Google Scholar 

  5. J. Chevallier, B. Thers, A. Lussin, C. Grattepain, Phys. Rev. B 58(12), 7966 (1998)

    ADS  Article  Google Scholar 

  6. C.G. Van de Walle, J. Alloys Compd. 446–447, 48 (2007)

    Article  Google Scholar 

  7. X.Y. Li, H.J. Li, Z.J. Wang, H. Xia, Z.Y. Xiong, J.X. Wang, B.C. Yang, Opt. Commun. 282, 247 (2009)

    ADS  Article  Google Scholar 

  8. S.H. Lee, T.S. Lee, K.S. Lee, B. Cheong, Y.D. Kim, W.M. Kim, J. Phys. D, Appl. Phys. 41, 095303 (2008)

    ADS  Article  Google Scholar 

  9. N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem. 99(45), 16646 (1995)

    Article  Google Scholar 

  10. Y. Shigesato, D.C. Paine, T.E. Haynes, J. Appl. Phys. 73, 3805 (1993)

    ADS  Article  Google Scholar 

  11. T.S. Moss, Proc. Phys. Soc. Lond. B 67, 775 (1954)

    ADS  Article  Google Scholar 

  12. E. Burstein, Phys. Rev. 93, 632 (1954)

    ADS  Article  Google Scholar 

  13. I. Hamberg, C.G. Granqvist, K.F. Berggren, B.E. Sernelius, L. Engstrom, Phys. Rev. B 30(6), 3240 (1984)

    ADS  Article  Google Scholar 

  14. A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B 61(22), 15019 (2000)

    ADS  Article  Google Scholar 

  15. W. Liu, G. Du, Y. Sun, Y. Xu, T. Yang, X. Wang, Y. Chang, F. Qiu, Thin Solid Films 515, 3057 (2007)

    ADS  Article  Google Scholar 

  16. K. Okada, S. Kohiki, S. Luo, D. Sekiba, S. Ishii, M. Mitome, A. Kohno, T. Tajiri, F. Shoji, Thin Solid Films 519, 3557 (2011)

    ADS  Article  Google Scholar 

  17. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)

    ADS  Article  Google Scholar 

  18. H. Sato, T. Minami, S. Takata, T. Mouri, N. Ogawa, Thin Solid Films 220, 327 (1992)

    ADS  Article  Google Scholar 

  19. W. Eisele, A. Ennaoui, P. Schubert-Bischoff, M. Giersig, C. Pettenkofer, J. Krauser, M. Lux-Steiner, S. Zweigart, F. Karg, Sol. Energy Mater. Sol. Cells 75, 17 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from NSC 99-2221-E-390-013-MY2 and NSC 101-2221-E-005-065, and experimental support from Mr. In-Ching Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Fu Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, CC., Wang, FH. & Yang, CF. Effects of deposition temperature and hydrogen flow rate on the properties of the Al-doped ZnO thin films and amorphous silicon thin-film solar cells. Appl. Phys. A 112, 877–883 (2013). https://doi.org/10.1007/s00339-012-7270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7270-2

Keywords

  • Solar Cell
  • Carrier Concentration
  • Deposition Temperature
  • Optical Transmission Spectrum
  • Short Wavelength Region