Skip to main content

Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica

Abstract

We have analyzed the ablation depth yield of fused silica irradiated with shaped pulse trains with a separation of 500 fs and increasing or decreasing intensity envelopes. This temporal separation value is extracted from previous studies on ablation dynamics upon irradiation with transform-limited 100 fs laser pulses. The use of decreasing intensity pulse trains leads to a strong increase of the induced ablation depth when compared to the behavior, at the same pulse fluence, of intensity increasing pulse trains. In addition, we have studied the material response under stretched (500 fs, FWHM) and transform-limited (100 fs, FWHM) pulses, for which avalanche or multiphoton ionization respectively dominates the carrier generation process. The comparison of the corresponding evolution of the ablated depth vs. fluence suggests that the use of pulse trains with decreasing intensity at high fluences should lead to enhanced single exposure ablation depths, beyond the limits corresponding to MPI- or AI-alone dominated processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyerter-Vehn, S.I. Anisimov, Phys. Rev. Lett. 81, 224 (1998)

    Article  ADS  Google Scholar 

  2. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, Proc. SPIE 3343, 46 (1998)

    Article  ADS  Google Scholar 

  3. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, J. Solis, J. Opt. Soc. Am. B 27, 121986 (2010)

    Article  Google Scholar 

  4. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, J. Bonse, Appl. Phys. Lett. 91, 082902 (2007)

    Article  ADS  Google Scholar 

  5. S. Guizard, N. Fedorov, A. Mouskeftaras, S. Klimentov, AIP Conf. Proc. 1278, 336 (2010)

    Article  ADS  Google Scholar 

  6. I.H. Chowdhury, A.Q. Wu, X. Xu, A.M. Weiner, Appl. Phys. A, Mater. Sci. Process. 81, 1627 (2005)

    Article  ADS  Google Scholar 

  7. B. Rethfeld, Phys. Rev. B 73, 035101 (2006)

    Article  ADS  Google Scholar 

  8. B.H. Christensen, P. Balling, Phys. Rev. B 79, 155424 (2009)

    Article  ADS  Google Scholar 

  9. A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000)

    Article  ADS  Google Scholar 

  10. A. Präkelt, M. Wollenhaupt, A. Assion, Ch. Horn, C. Sarpe-Tudoran, M. Winter, T. Baumert, Rev. Sci. Instrum. 74, 950 (2003)

    Article  Google Scholar 

  11. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, Appl. Phys. A 77, 265 (2003)

    ADS  Google Scholar 

  12. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, Appl. Phys. Lett. 80, 353 (2002)

    Article  ADS  Google Scholar 

  13. R. Stoian, M. Wollenhaupt, T. Baumert, I.V. Hertel, in Laser Precision Microfabrication, ed. by K. Sugioka, M. Meunier, A. Piqué (Springer, Berlin, 2010). Chap. 5

    Google Scholar 

  14. L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, T. Baumert, Appl. Phys. A 92 (2008)

  15. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, Opt. Express 15, 17855 (2007)

    Article  ADS  Google Scholar 

  16. R. Trebino, K.W. DeLong, D.N. Fittinghoff, J.N. Sweetser, M.A. Krumbügel, B.A. Richman, D.J. Kane, Rev. Sci. Instrum. 68, 3277 (1997)

    Article  ADS  Google Scholar 

  17. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  18. M. Hacker, G. Stobrawa, T. Feurer, Opt. Express 9, 191 (2001)

    Article  ADS  Google Scholar 

  19. A. Rundquist, A. Efimov, D.H. Reitze, J. Opt. Soc. Am. B 19, 2468 (2002)

    Article  ADS  Google Scholar 

  20. B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, D.H.H. Hoffmann, Appl. Phys. A 101, 19 (2010)

    Article  ADS  Google Scholar 

  21. J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, J. Solis, Appl. Surf. Sci. doi:10.1016/j.apsusc.2011.12.020

  22. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996)

    Article  ADS  Google Scholar 

  23. L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, L. Wang, Proc. SPIE 7655, 76552J (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish TEC2008-01183 and TEC2011-22422 projects. J.H.-R. and D.P. acknowledges a grant of the Spanish Ministry of Science and Innovation. W.G. acknowledges the CSIC (I3P Program contracts co-funded by the European Social Fund). We are grateful to Professor S. Marcos from IO-CSIC for providing access to the optical interference microscope.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Hernandez-Rueda or J. Siegel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hernandez-Rueda, J., Siegel, J., Puerto, D. et al. Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica. Appl. Phys. A 112, 185–189 (2013). https://doi.org/10.1007/s00339-012-7238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7238-2

Keywords

  • Shaped Pulse
  • Pulse Train
  • Carrier Generation
  • Ablation Depth
  • Multiphoton Ionization