Applied Physics A

, Volume 110, Issue 3, pp 735–739 | Cite as

Determination of femtosecond ablation thresholds by using laser ablation induced photoacoustics (LAIP)

  • Daniel J. O. OrziEmail author
  • Fernando C. Alvira
  • Gabriel M. Bilmes


Femtosecond laser material processing as micromachining and nanoparticles fabrication require a careful control of the fluences deposited on the samples. In many cases, best results are obtained by using fluences slightly above the Laser Ablation Threshold (LAT), therefore its accurate determination is an important requirement. LAT can be obtained by measuring the intensity of the acoustic signal generated during the ablation process as a function of the laser fluence.

In this work femtosecond laser ablation thresholds of commercially polished stainless steel plates, white high impact polystyrene, frosted glass, antique rag papers and silicon oxynitride thin films were determined by using laser ablation induced photoacoustics (LAIP). Results were compared with similar data previously obtained by using a nanosecond Nd:YAG laser.


Laser Ablation Femtosecond Laser Acoustic Signal Laser Fluence Ablation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Dr. Gustavo A. Torchia for fruitful discussions and for providing the SiON samples. This work was partially supported by PICT-Start Up #0999-2010 ANPCyT. DJOO and GMB are researchers from CIC-BA. FCA is a postdoctoral fellow at CONICET.


  1. 1.
    C.R. Phipps, Laser Ablation and Its Applications (Springer, New York, N.Y., 2007) CrossRefGoogle Scholar
  2. 2.
    N.B. Dahotre, Laser Fabrication and Machining of Materials (Springer, New York, 2007) Google Scholar
  3. 3.
    J. Perrière, E. Millon, E. Fogarassy, Recent Advances in Laser Processing of Materials (Elsevier, Amsterdam, 2006) Google Scholar
  4. 4.
    H. Misawa, S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH, Weinheim, 2006) CrossRefGoogle Scholar
  5. 5.
    S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, L. Lanotte, Appl. Phys. Lett. 84(22), 4502–4504 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    F.A. Videla, G.A. Torchia, D.C. Schinca, L.B. Scaffardi, P. Moreno, C. Mendez, L.J. Giovanetti, J.M.R. Lopez, L. Roso, J. Appl. Phys. 107(11) (2010) Google Scholar
  7. 7.
    F.C. Alvira, F.V. Ramirez Rozzi, G.A. Torchia, L. Roso, G.M. Bilmes, J. Anthropol. Sci. 89, 153–160 (2011) Google Scholar
  8. 8.
    E.L. Gurevich, R. Hergenroder, Appl. Spectrosc. 61(10), 233A–242A (2007) ADSCrossRefGoogle Scholar
  9. 9.
    R.E. Russo, X. Mao, S.S. Mao, Anal. Chem. 74(3) (2002) Google Scholar
  10. 10.
    A.P. Caricato, A. Luches, Appl. Phys. A, Mater. Sci. Process. 105(3), 565–582 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    M. Cano-Lara, S. Camacho-López, A. Esparza-García, M.A. Camacho-López, Opt. Mater. 33(11), 1648–1653 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21(21), 1729–1731 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    G.A. Torchia, C. Mendez, I. Arias, L. Roso, J. Piqueras, E. Ruiz, P.L. Pernas, in Proceedings (IEEE Cat. No. 05EX965) (IEEE, New York, 2005), pp. 335–337 Google Scholar
  14. 14.
    B. Wu, M. Zhou, J. Li, X. Ye, G. Li, L. Cai, Appl. Surf. Sci. 256(1), 61–66 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    R. Suriano, A. Kuznetsov, S.M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B.N. Chichkov, M. Levi, S. Turri, Appl. Surf. Sci. 257(14), 6243–6250 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    A. Mitra, R.K. Thareja, J. Mater. Sci. 34(3), 615–619 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Sell, D.M. Heffelfinger, P. Ventzek, R.M. Gilgenbach, Appl. Phys. Lett. 55(23), 2435–2437 (1989) ADSCrossRefGoogle Scholar
  18. 18.
    J.A. Sell, D.M. Heffelfinger, P.L.G. Ventzek, R.M. Gilgenbach, J. Appl. Phys. 69(3), 1330–1336 (1991) ADSCrossRefGoogle Scholar
  19. 19.
    M. Hashida, A.F. Semerok, O. Gobert, G. Petite, Y. Izawa, J.F. Wagner, Appl. Surf. Sci. 197–198, 862–867 (2002) CrossRefGoogle Scholar
  20. 20.
    S.H. Ko, Y. Choi, D.J. Hwang, C.P. Grigoropoulos, J. Chung, D. Poulikakos, Appl. Phys. Lett. 89(14) (2006) Google Scholar
  21. 21.
    S. Lazare, V. Granier, J. Appl. Phys. 63(6), 2110–2115 (1988) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Domankevitz, N.S. Nishioka, IEEE J. Quantum Electron. 26(12), 2276–2278 (1990) ADSCrossRefGoogle Scholar
  23. 23.
    D. Vouagner, C. Beleznai, J.P. Girardeau-Montaut, C. Templier, H. Gonnord, Diam. Relat. Mater. 9(3), 786–791 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    G.M. Bilmes, D.J.O. Orzi, O.E. Martínez, A. Lencina, Appl. Phys. B, Lasers Opt. 82(4), 643–648 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    F.C. Alvira, D.J.O. Orzi, G.M. Bilmes, Appl. Spectrosc. 63(2), 192–198 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    D.J.O. Orzi, G.M. Bilmes, in 9th International Conference on Laser Ablation, Tenerife, Spain (2007) Google Scholar
  27. 27.
    S. Amoruso, C. Altucci, R. Bruzzese, C. De Lisio, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, Appl. Phys. A, Mater. Sci. Process. 79(4–6), 1377–1380 (2004) ADSGoogle Scholar
  28. 28.
    A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. von der Linde, J. Appl. Phys. 85(6), 3301–3309 (1999) ADSCrossRefGoogle Scholar
  29. 29.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9(3), 949 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85(9), 6803–6810 (1999) ADSCrossRefGoogle Scholar
  31. 31.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, J. Opt. Soc. Am. B, Opt. Phys. 13(2), 459–468 (1996) ADSCrossRefGoogle Scholar
  32. 32.
    L.J. Radziemski, D.A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Daniel J. O. Orzi
    • 1
    • 2
    Email author
  • Fernando C. Alvira
    • 1
  • Gabriel M. Bilmes
    • 1
    • 2
  1. 1.Centro de Investigaciones ÓpticasCONICET La Plata-CIC, CC 3GonnetArgentina
  2. 2.Facultad de IngenieríaUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations