In-situ electrical characterisation of a photodiode during nano-structuring with a focussed ion beam


We study the fabrication and power conversion efficiency of GaAs photodiodes, which have been nano-structured and covered with colloidal quantum dots. A focussed ion beam is used to etch vertical channels into the photodiodes and the detrimental effects of this treatment are characterised in-situ during the fabrication process. A novel experimental configuration allows the electrical characterization of the photodiodes under laser illumination during the nano-fabrication process and reveals the gradual decrease of the photodiodes’ shunt resistance with increasing laterally revealed surface along the etched channels. This is interpreted as evidence for leakage currents through redeposited material and surface states on the lateral channel surface. After the fabrication step the channels are filled with colloidal quantum dots, which upon absorption of light transfer electronic excitations to the photodiode via resonance energy transfer. It is found that after the addition of quantum dots the nano-structured photodiodes show larger enhancements of the energy conversion efficiency under simulated solar irradiance than the pristine photodiodes. Nevertheless, the device degradation induced by the ion beam treatment itself cannot be compensated for.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    R.R. Lunt, T.P. Osedach, P.R. Brown, J.A. Rowehl, V. Bulovic, Adv. Mater. 23, 5712–5727 (2011)

    Article  Google Scholar 

  2. 2.

    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. 20, 12–20 (2012)

    Article  Google Scholar 

  3. 3.

    S. Chanyawadee, R.T. Harley, D. Taylor, M. Henini, A.S. Susha, A.L. Rogach, P.G. Lagoudakis, Appl. Phys. Lett. 94, 233502 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    S. Chanyawadee, R.T. Harley, M. Henini, D.V. Talapin, P.G. Lagoudakis, Phys. Rev. Lett. 102, 077402 (2009)

    ADS  Article  Google Scholar 

  5. 5.

    S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, A. Madhukar, Nano Lett. 9, 4548–4552 (2009)

    ADS  Article  Google Scholar 

  6. 6.

    S. Lu, A. Madhukar, Nano Lett. 7, 3443–3451 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    H.M. Nguyen, O. Seitz, W. Peng, Y.N. Gartenstein, Y.J. Chabal, A.V. Malko, ACS Nano 6, 5574–5582 (2012)

    Article  Google Scholar 

  8. 8.

    D. Dexter, J. Lumin. 18, 779–784 (1979)

    Article  Google Scholar 

  9. 9.

    M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, V. Klimov, Nature 429, 642–646 (2004)

    ADS  Article  Google Scholar 

  10. 10.

    S. Blumstengel, S. Sadofev, C. Xu, J. Puls, F. Henneberger, Phys. Rev. Lett. 97, 237401 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    G. Heliotis, G. Itskos, R. Murray, M.D. Dawson, I.M. Watson, D.D.C. Bradley, Adv. Mater. 18, 334–338 (2006)

    Article  Google Scholar 

  12. 12.

    S. Rohrmoser, J. Baldauf, R.T. Harley, P.G. Lagoudakis, S. Sapra, A. Eychmüller, I. Watson, Appl. Phys. Lett. 91, 092126 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    G. Itskos, G. Heliotis, P.G. Lagoudakis, J.M. Lupton, N.P. Barradas, E. Alves, S. Pereira, I.M. Watson, M.D. Dawson, J. Feldmann, R. Murray, D.D.C. Bradley, Phys. Rev. B 76, 035344 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    S. Chanyawadee, P.G. Lagoudakis, R.T. Harley, D.G. Lidzey, M. Henini, Phys. Rev. B 77, 193402 (2008)

    ADS  Article  Google Scholar 

  15. 15.

    C.R. Belton, G. Itskos, G. Heliotis, P.N. Stavrinou, P.G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I.M. Watson, A.R. Mackintosh, R.A. Pethrick, J. Feldmann, R. Murray, M.D. Dawson, D.D.C. Bradley, J. Phys. D, Appl. Phys. 41, 094006 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    J.J. Rindermann, G. Pozina, B. Monemar, L. Hultman, H. Amano, P.G. Lagoudakis, Phys. Rev. Lett. 107, 236805 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer, V. Klimov, Nano Lett. 5, 1039–1044 (2005)

    ADS  Article  Google Scholar 

  18. 18.

    M. Achermann, M.A. Petruska, D.D. Koleske, M.H. Crawford, V. Klimov, Nano Lett. 6, 1396–1400 (2006)

    ADS  Article  Google Scholar 

  19. 19.

    S. Chanyawadee, P. Lagoudakis, R. Harley, M. Charlton, D. Talapin, H. Huang, C. Lin, Adv. Mater. 22, 602–606 (2009)

    Article  Google Scholar 

  20. 20.

    G. Itskos, C. Belton, G. Heliotis, I. Watson, M. Dawson, Nanotechnology 20, 275207 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    S. Nizamoglu, T. Erdem, X.W. Sun, H.V. Demir, Opt. Lett. 35, 3372 (2010)

    ADS  Article  Google Scholar 

  22. 22.

    V.M. Agranovich, Y.N. Gartstein, M. Litinskaya, Chem. Rev. 111, 5179 (2011)

    Article  Google Scholar 

  23. 23.

    D.V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, H. Weller, Nano Lett. 3, 1677 (2003)

    ADS  Article  Google Scholar 

  24. 24.

    A.A. Tseng, J. Micromech. Microeng. 14, R15–R34 (2004)

    Article  Google Scholar 

Download references


We acknowledge funding from the EPSRC through Contract No. EP/G063494/1 as well as the European Network of Excellence Nanophotonics for Energy Efficiency (N4E) and the European project ITN-ICARUS. We also thank Dmitri V. Talapin for the provision of the colloidal QDs. J.J.R. is indebted to the Reiner–Lemoine–Stiftung, Germany, for financial support.

Author information



Corresponding author

Correspondence to Jan Junis Rindermann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rindermann, J.J., Henini, M. & Lagoudakis, P.G. In-situ electrical characterisation of a photodiode during nano-structuring with a focussed ion beam. Appl. Phys. A 110, 935–941 (2013).

Download citation


  • GaAs
  • Power Conversion Efficiency
  • Short Circuit Current
  • Shunt Resistance
  • Depletion Zone