Skip to main content
Log in

Effect of electron phonon interaction on the optical conductivity of zigzag carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical conductivity of a zigzag carbon nanotube is investigated in the context of the Holstein model. Green’s function approach is applied to calculate the optical conductivity as a function of photon frequency, temperature, and electron–phonon coupling strength. Based on our results, optical conductivity decreases with electron–phonon coupling constant for both metallic and semiconducting carbon nanotubes. Our results show that temperature yields shortening the height of peaks of zigzag CNT optical absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  2. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  3. R. Saito, M. Fujite, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992)

    Article  ADS  Google Scholar 

  4. S.J. Tans, R.A.M. Verschueren, C. Dekker, Nature (London) 393, 49 (1998)

    Article  ADS  Google Scholar 

  5. S. Bandow, Phys. Rev. Lett. 80, 3779 (1998)

    Article  ADS  Google Scholar 

  6. J.A. Misewich, R. Martel, Ph. Avouris, J.C. Tsang, S. Henize, J. Tersoff, Science 300, 783 (2003)

    Article  ADS  Google Scholar 

  7. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fisher, R.E. Smalley, Science 273, 483 (1996)

    Article  ADS  Google Scholar 

  8. G.Y. Guo, K.C. Chu, D.S. Wang, C.G. Duan, Phys. Rev. B, Condens. Matter 69, 205416 (2004)

    Article  ADS  Google Scholar 

  9. A. Hagen, T. Hertel, Nano Lett. 3, 383 (2003)

    Article  ADS  Google Scholar 

  10. Y. Takagi, S. Okada, Phys. Rev. B, Condens. Matter 79, 233406 (2009)

    Article  ADS  Google Scholar 

  11. Y. Battie, Analyst 137, 2151–2157 (2012)

    Article  ADS  Google Scholar 

  12. Y. Battie, Carbon (2012). doi:10.1016/j.carbon.2012.05.057

    Google Scholar 

  13. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)

    Article  ADS  Google Scholar 

  14. T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959); 8, 343 (1959)

    Article  ADS  MATH  Google Scholar 

  15. K. Sasaki, K. Sato, J. Jiang, R. Saito, S. Onari, Y. Tanaka, cond mat 0703318

  16. M. Lazzeri, F. Mauri, Phys. Rev. Lett. 97, 266407 (2006)

    Article  ADS  Google Scholar 

  17. N.M.R. Peres, M.A.N. Araujo, D. Bozi, Phys. Rev. B, Condens. Matter 70, 195122 (2004)

    Article  ADS  Google Scholar 

  18. A.B. Migdal, Pis’ma Zh. Eksp. Teor. Fiz. 34, 1438 (1958)

    MathSciNet  Google Scholar 

  19. G.D. Mahan, Many Particle Physics (Plenum Press, New York, 1993)

    Google Scholar 

  20. I. Paul, J. Kotliar, Phys. Rev. B, Condens. Matter 67, 115131 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Rezania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezania, H., Taherkhani, F. Effect of electron phonon interaction on the optical conductivity of zigzag carbon nanotubes. Appl. Phys. A 109, 343–347 (2012). https://doi.org/10.1007/s00339-012-7178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7178-x

Keywords

Navigation