Skip to main content
Log in

Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work is aimed at an analysis of the influence on the efficiency of nanoparticle production of a cavitation bubble (CB), which forms during the laser ablation process in high-fluence regime. The CB is produced on an Au metal target immersed in water by 1064 nm ps Nd:YAG laser pulses at different fluences. Its time–space evolution is monitored by a shadowgraphic set-up, while the Au nanoparticles production rate is tagged by the growth of the plasmon resonance, which is detected by measuring shot-by-shot the UV-Vis absorbance. We analyze the dependence of bubble size on the experimental parameters. Our results appear of interest to enhance the nanoparticle production efficiency in a liquid medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.K. Jain, K.S. Lee, M.A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006)

    Article  Google Scholar 

  2. A. Kumar, P. Kumar Vemula, P.M. Ajayan, J. John, Nat. Mater. 7, 236 (2008)

    Article  ADS  Google Scholar 

  3. M. Alloisio, A. Demartini, C. Cuniberti, G. Dellepiane, S. Jadhav, S. Thea, E. Giorgetti, C. Gellini, M.J. Muniz-Miranda, Phys. Chem. C 113, 19475 (2009)

    Article  Google Scholar 

  4. C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Nano Lett. 5, 709 (2005)

    Article  ADS  Google Scholar 

  5. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  6. C.E. Brennen, Cavitation Bubble Dynamics (Oxford University Press, London, 1995)

    Google Scholar 

  7. K. Sugioka, M. Meunier, A. Piqué, Laser Precision Microfabrication (Springer, Berlin, 2010)

    Book  Google Scholar 

  8. F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, J. Phys. Chem. C 114, 3354 (2010)

    Article  Google Scholar 

  9. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 104, 9111 (2000)

    Article  Google Scholar 

  10. J. Noack, D.X. Hammer, G.D. Noojin, B.A. Rockwell, A. Vogel, J. Appl. Phys. 83, 7489 (1998)

    Article  ADS  Google Scholar 

  11. F. Mafune, J.y. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 107, 4218 (2003)

    Article  Google Scholar 

  12. W.T. Nichols, T. Sasaki, N. Koshizaki, J. Appl. Phys. 100, 114912 (2006)

    Article  ADS  Google Scholar 

  13. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding from the project NABLA (Decree n. 4508-September 1, 2010 by Regione Toscana-Italy, PAR FAS 2007–2013 funds, Action 1.1.a.3) and PRIN2009 “Novel plasmon-based processes and materials for sensor applications” of the Italian Ministry of Research is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tiberi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiberi, M., Simonelli, A., Cristoforetti, G. et al. Effect of picosecond laser induced cavitation bubbles generated on Au targets in a nanoparticle production set-up. Appl. Phys. A 110, 857–861 (2013). https://doi.org/10.1007/s00339-012-7165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7165-2

Keywords

Navigation