Applied Physics A

, Volume 110, Issue 3, pp 547–551 | Cite as

Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air

  • J. Bonse
  • S. Höhm
  • A. Rosenfeld
  • J. Krüger


The formation of laser-induced periodic surface structures (LIPSS) on titanium upon irradiation with linearly polarized femtosecond (fs) laser pulses (τ=30 fs, λ=790 nm) in an air environment is studied experimentally and theoretically. In the experiments, the dependence on the laser fluence and the number of laser pulses per irradiation spot has been analyzed. For a moderate number of laser pulses (N<1000) and at fluences between ∼0.09 and ∼0.35 J/cm2, predominantly low-spatial-frequency-LIPSS with periods between 400 nm and 800 nm are observed perpendicular to the polarization. In a narrow fluence range between 0.05 and 0.09 J/cm2, high-spatial-frequency-LIPSS with sub-100-nm spatial periods (∼λ/10) can be generated with an orientation parallel to the polarization (N=50). These experimental results are complemented by calculations based on a theoretical LIPSS model and compared to the present literature.


Surface Plasmon Polaritons Titanium Surface Spatial Period Incident Laser Beam Laser Beam Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank B. Strauß (BAM 6.8) for the SEM characterizations and R. Koter (BAM 6.4) for his help during the fs-laser irradiation experiments. This work was supported by the German Science Foundation (DFG) under grants no. RO 2074/7-1 and KR 3638/1-1.


  1. 1.
    J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Appl. Phys. A 71, 657 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    A. Borowiec, H.K. Haugen, Appl. Phys. Lett. 82, 4462 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    A.Y. Vorobyev, V.S. Makin, C. Guo, J. Appl. Phys. 101, 034903 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    J. Bonse, A. Rosenfeld, J. Krüger, J. Appl. Phys. 106, 104910 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983) ADSCrossRefGoogle Scholar
  8. 8.
    G. Miyaji, K. Miyazaki, Opt. Express 16, 16265 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, ACS Nano 3, 4062 (2009) CrossRefGoogle Scholar
  10. 10.
    F. Garrelie, J.P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, O. Parriaux, Opt. Express 19, 9035 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, J. Appl. Phys. 105, 034908 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    G.A. Martsinovskii, G.D. Shandybina, D.S. Smirnov, S.V. Zabotnov, L.A. Golovan, V.Yu. Timoshenko, P.K. Kashkarov, Opt. Spectrosc. 105, 67 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci. 197–198, 891 (2002) CrossRefGoogle Scholar
  14. 14.
    A.F. Hollemann, E. Wiberg, N. Wiberg (eds.), Inorganic Chemistry (Academic Press, San Diego, 2001) Google Scholar
  15. 15.
    M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, M. Fujita, Vacuum 80, 1346 (2006) CrossRefGoogle Scholar
  16. 16.
    A.Y. Vorobyev, C. Guo, Appl. Surf. Sci. 253, 7272 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    B.K. Nayak, M.C. Gupta, K.W. Kolasinsky, Appl. Phys. A 90, 399 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Huang, S. Liu, W. Li, Y. Liu, W. Yang, Opt. Express 17, 20756 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    M. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, S. Sakabe, Phys. Rev. B 82, 165417 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    C. Wang, H. Huo, M. Johnson, M. Shen, E. Mazur, Nanotechnology 21, 075304 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    S.I. Kudryashov, E. Golosov, A. Ionin, Y.R. Kolobov, A.E. Ligachev, L.V. Seleznev, D.V. Sinitsyn, A.R. Sharipov, AIP Conf. Proc. 1278, 156 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    E. Golosov, A. Ionin, Y.R. Kolobov, S.I. Kudryashov, A.E. Ligachev, Y.N. Novoselov, L.V. Seleznev, D.V. Sinitsyn, J. Exp. Theor. Phys. 113, 14 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    J.M. Liu, Opt. Lett. 7, 196 (1982) ADSCrossRefGoogle Scholar
  24. 24.
    J. Bonse, J. Krüger, J. Appl. Phys. 108, 034903 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.BAM Bundesanstalt für Materialforschung und -prüfungBerlinGermany
  2. 2.Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)BerlinGermany

Personalised recommendations