Abstract
In this paper we present the development of an open code (“MATFESA”) based on the Finite Element Method (FEM) which can be used to estimate the strain and refractive index fields after femtosecond laser writing process by means of an iterative analysis. The fs-laser pulse residual stress control is the key to obtain high performance guiding structures for photonics.
The whole complex physical problem consists in almost three steps inside the material during/after femtosecond laser interaction which cannot be analyzed using thermodynamic equilibrium equations. These are: ionization, expansion and re-solidification.
In the numerical model solved, a mechanical expansion is introduced in the focal plane to simulate laser interaction at intensities above the optical breakdown threshold. Numerical results were compared to experimental measurements of optical guided modes in LiNbO3 fs-waveguides.
The MATFESA model was compared with ABAQUS commercial software in order to verify the strain field results and also to test the 2D, plane strain approximation.




References
K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71, 3329–3331 (1997)
A.M. Strelsov, N.F. Borrelli, J. Opt. Soc. Am. B 19, 2496–2504 (2002)
M. Will, S. Nolte, B.N. Chichkov, A. Tunnermann, Appl. Opt. 41, 4360–4364 (2002)
C. Florea, K.A. Winick, Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses. J. Lightwave Technol. 21, 246–253 (2003)
S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, D. Kopf, Opt. Lett. 29, 1900–1902 (2004)
C. Méndez, J.R. Vázquez de Aldana, G.A. Torchia, L. Roso, Appl. Phys. B, Laser Opt. 86, 243 (2007)
A. Ródenas, L.M. Maestro, M.O. Ramírez, G.A. Torchia, L. Roso, F. Chen, D. Jaque, Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides. J. Appl. Phys. 106, 013110-6 (2009)
G. De Lavalle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A, Pure Appl. Opt. 11, 013001 (2009)
G.A. Torchia, A. Ródenas, A. Benayas, L. Roso, D. Jaque, Highly efficient laser action in femtosecond-written Nd:yttrium aluminum crystals. Appl. Phys. Lett. 92, 111103 (2008)
C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, W. Sohler, Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing, in Proceedings of European Conference on Integrated Optics (2007)
M.R. Tejerina, G.A. Torchia, Appl. Opt. 50(20), 3449–3454 (2011)
S. Ringleb, K. Rademaker, S. Nolte, A. Tünnermann, Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses. Appl. Phys. B 102, 59–63 (2011)
Y.W. Kwon, H. Bang, Finite Element Method Using MATLAB (1997)
J. Burghoff, S. Nolte, A. Tünnermann, Appl. Phys. A 89(1), 127 (2007)
M. Will, J. Burghoff, S. Nolte, A. Tünnermann, Detailed investigations on femtosecond induced modifications in crystalline quartz for integrated optical applications, in Conference “Commercial and Biomedical Applications of Ultrafast Lasers” (2005)
T.C. Ting, Anisotropic Elasticity: Theory and Applications (Oxford University Press, London, 1996)
C.B. Schaffer, Interaction of femtosecond laser pulses with transparent materials, Thesis, 2001
Acknowledgements
The authors wish to thank CONICET and Agencia Nacional de Promoción Científica y Tecnológica (Argentina) for financial support received for this work under projects PIP 0394 and PICT 2575.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Tejerina, M., Torchia, G.A. MATFESA: strain and refractive index field estimation after femtosecond laser interaction with transparent material. Appl. Phys. A 110, 591–594 (2013). https://doi.org/10.1007/s00339-012-7132-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00339-012-7132-y