Skip to main content
Log in

MATFESA: strain and refractive index field estimation after femtosecond laser interaction with transparent material

Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper we present the development of an open code (“MATFESA”) based on the Finite Element Method (FEM) which can be used to estimate the strain and refractive index fields after femtosecond laser writing process by means of an iterative analysis. The fs-laser pulse residual stress control is the key to obtain high performance guiding structures for photonics.

The whole complex physical problem consists in almost three steps inside the material during/after femtosecond laser interaction which cannot be analyzed using thermodynamic equilibrium equations. These are: ionization, expansion and re-solidification.

In the numerical model solved, a mechanical expansion is introduced in the focal plane to simulate laser interaction at intensities above the optical breakdown threshold. Numerical results were compared to experimental measurements of optical guided modes in LiNbO3 fs-waveguides.

The MATFESA model was compared with ABAQUS commercial software in order to verify the strain field results and also to test the 2D, plane strain approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71, 3329–3331 (1997)

    Article  ADS  Google Scholar 

  2. A.M. Strelsov, N.F. Borrelli, J. Opt. Soc. Am. B 19, 2496–2504 (2002)

    Article  ADS  Google Scholar 

  3. M. Will, S. Nolte, B.N. Chichkov, A. Tunnermann, Appl. Opt. 41, 4360–4364 (2002)

    Article  ADS  Google Scholar 

  4. C. Florea, K.A. Winick, Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses. J. Lightwave Technol. 21, 246–253 (2003)

    Article  ADS  Google Scholar 

  5. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, D. Kopf, Opt. Lett. 29, 1900–1902 (2004)

    Article  ADS  Google Scholar 

  6. C. Méndez, J.R. Vázquez de Aldana, G.A. Torchia, L. Roso, Appl. Phys. B, Laser Opt. 86, 243 (2007)

    Article  Google Scholar 

  7. A. Ródenas, L.M. Maestro, M.O. Ramírez, G.A. Torchia, L. Roso, F. Chen, D. Jaque, Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides. J. Appl. Phys. 106, 013110-6 (2009)

    Article  ADS  Google Scholar 

  8. G. De Lavalle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A, Pure Appl. Opt. 11, 013001 (2009)

    Article  ADS  Google Scholar 

  9. G.A. Torchia, A. Ródenas, A. Benayas, L. Roso, D. Jaque, Highly efficient laser action in femtosecond-written Nd:yttrium aluminum crystals. Appl. Phys. Lett. 92, 111103 (2008)

    Article  ADS  Google Scholar 

  10. C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, W. Sohler, Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing, in Proceedings of European Conference on Integrated Optics (2007)

    Google Scholar 

  11. M.R. Tejerina, G.A. Torchia, Appl. Opt. 50(20), 3449–3454 (2011)

    Article  ADS  Google Scholar 

  12. S. Ringleb, K. Rademaker, S. Nolte, A. Tünnermann, Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses. Appl. Phys. B 102, 59–63 (2011)

    Article  ADS  Google Scholar 

  13. Y.W. Kwon, H. Bang, Finite Element Method Using MATLAB (1997)

    Google Scholar 

  14. J. Burghoff, S. Nolte, A. Tünnermann, Appl. Phys. A 89(1), 127 (2007)

    Article  ADS  Google Scholar 

  15. M. Will, J. Burghoff, S. Nolte, A. Tünnermann, Detailed investigations on femtosecond induced modifications in crystalline quartz for integrated optical applications, in Conference “Commercial and Biomedical Applications of Ultrafast Lasers” (2005)

    Google Scholar 

  16. T.C. Ting, Anisotropic Elasticity: Theory and Applications (Oxford University Press, London, 1996)

    MATH  Google Scholar 

  17. C.B. Schaffer, Interaction of femtosecond laser pulses with transparent materials, Thesis, 2001

Download references

Acknowledgements

The authors wish to thank CONICET and Agencia Nacional de Promoción Científica y Tecnológica (Argentina) for financial support received for this work under projects PIP 0394 and PICT 2575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Torchia.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 336 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejerina, M., Torchia, G.A. MATFESA: strain and refractive index field estimation after femtosecond laser interaction with transparent material. Appl. Phys. A 110, 591–594 (2013). https://doi.org/10.1007/s00339-012-7132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7132-y

Keywords

Navigation