Skip to main content
Log in

Synthesis and characterization of undoped and tin-doped ZnO nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, undoped and tin-doped ZnO nanostructures were grown onto non-conductive substrates by a simple solution method. Structural, morphological, optical and electrical properties of the structures were investigated with respect to tin concentration. From XRD studies, all the ZnO nanostructures were found as hexagonal wurtzite type structures growing preponderantly oriented with c-axis normal to the substrate. An increase in tin content resulted in a decrease in grain size, whereas the dislocation density increases. SEM observations indicated that all the structures were textured throughout the substrates without any cracks or pores. The influence of incorporation of tin on surface morphology of the samples was clearly seen. Average diameter of the nanostructures decreased with increasing tin content. Absorption spectra of the structures revealed that the band gap of the films increases with increasing tin concentration. It is found that the tin-doped samples have higher average transmittance than the undoped one. The 1 % tin-doped sample exhibited ∼80 % average transparency, which was the best transparency among the doped samples. Electrical measurements showed that resistivity of the structures increased with increasing dopant concentration. This increasing was attributed due to a decrease in carrier concentration caused by carrier traps at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Tadatsugu, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, 35 (2005)

    Article  Google Scholar 

  2. Y. Yan, L. Zhou, J. Zou, Y. Zang, Appl. Phys. A, Mater. Sci. Process. 94, 559 (2009)

    Article  ADS  Google Scholar 

  3. F. Bayansal, S. Kahraman, G. Çankaya, H.A. Çetinkara, H.S. Güder, H.M. Çakmak, Growth of homogenous CuO nano-structured thin films by a simple solution method. J. Alloys Compd. 509, 2094 (2011)

    Article  Google Scholar 

  4. W. Bai, K. Yu, Q. Zhang, Y. Huang, Q. Wang, Z. Zhu, N. Dai, Y. Sun, Chemical solution-process method to synthesize ZnO nanorods with ultra-thin pinheads and ultra-thin nanobelts. Appl. Phys. A, Mater. Sci. Process. 87, 755 (2007)

    Article  ADS  Google Scholar 

  5. B. Ergin, E. Ketenci, F. Atay, Characterization of ZnO films obtained by ultrasonic spray pyrolisis technique. Int. J. Hydrog. Energy 34, 5249 (2009)

    Article  Google Scholar 

  6. F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Hydrogen sensors and switches from electrodeposited palladium nanowires. Science 293, 2227 (2001)

    Article  ADS  Google Scholar 

  7. M. Seol, H. Kim, W. Kim, K. Yong, Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer. Electrochem. Commun. 12, 1416 (2010)

    Article  Google Scholar 

  8. N.H. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films. Int. J. Hydrog. Energy 35, 4428 (2010)

    Article  Google Scholar 

  9. S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuators B 107, 379 (2005)

    Article  Google Scholar 

  10. J.H. Lee, B.O. Park, Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method. Thin Solid Films 426, 94 (2003)

    Article  ADS  Google Scholar 

  11. F. Paraguay, D.M. Miki-Yoshida, J. Morales, J. Solis, W.L. Estrada, Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapor. Thin Solid Films 373, 137 (2000)

    Article  ADS  Google Scholar 

  12. C.Y. Tsay, H.C. Cheng, Y.T. Tung, W.H. Tuan, C.K. Lin, Effects of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method. Thin Solid Films 517, 1032 (2008)

    Article  ADS  Google Scholar 

  13. M. Fragala, Y. Aleeva, G. Malandrino, ZnO nanorod arrays fabrication via chemical bath deposition: ligand concentration effect study. Superlattices Microstruct. 48, 408 (2010)

    Article  ADS  Google Scholar 

  14. F. Bayansal, H.A. Çetinkara, S. Kahraman, H.M. Çakmak, H.S. Güder, Nano-structured CuO films prepared by simple solution methods: plate-like, needle-like and network-like architectures. Ceram. Int. 38, 1859 (2012). doi:10.1016/j.ceramint.2011.10.011

    Article  Google Scholar 

  15. Z.Q. Xu, H. Deng, Y. Li, Q.H. Guo, Y.R. Li, Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method. Mater. Res. Bull. 41, 354 (2006)

    Article  Google Scholar 

  16. R.J. Hong, K. Helming, X. Jiang, B. Szyszka, Texture analysis of Al-doped ZnO thin films prepared by in-line reactive MF magnetron sputtering. Appl. Surf. Sci. 226, 378 (2004)

    Article  ADS  Google Scholar 

  17. H. Deng, J.J. Russell, R.N. Lamb, B. Jiang, Y. Li, X.Y. Zhou, Microstructure control of ZnO thin films prepared by single source chemical vapor deposition. Thin Solid Films 458, 43 (2004)

    Article  ADS  Google Scholar 

  18. V. Pecharsky, P. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, New York, 2005)

    Google Scholar 

  19. A. Van Der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22, 267 (1967)

    Google Scholar 

  20. A.A. Dakhel, F.Z. Henari, Optical characterization of thermally evaporated thin CdO films. Cryst. Res. Technol. 38, 979 (2003)

    Article  Google Scholar 

  21. S.H. Jeong, B.N. Park, S.B. Lee, J.H. Boo, Metal-doped ZnO thin films, synthesis and characterizations. Surf. Coat. Technol. 201, 5318 (2007)

    Article  Google Scholar 

  22. G.B. Williamson, R.C. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1, 34 (1956)

    Article  ADS  Google Scholar 

  23. S. Ilıcan, M. Çağlar, Y. Çağlar, Sn doping effects on the electro-optical properties of sol–gel derived transparent ZnO films. Appl. Surf. Sci. 256, 7204 (2010)

    Article  ADS  Google Scholar 

  24. C.M. Muiva, T.S. Sathiaraj, K. Maabong, Effects of doping concentration on properties of aluminium doped zinc oxide thin films prepared by sprey pyrolysis for transparent electrode applications. Ceram. Int. 37, 555 (2011)

    Article  Google Scholar 

  25. M.L. de la Olvera, A. Maldonado, R. Asomoza, M. Melendez-Lira, Effect of the substrate temperature and acidity of the spray solution on the physical properties of F-doped ZnO thin films deposited by chemical spray. Sol. Energy Mater. Sol. Cells 71, 61 (2002)

    Article  Google Scholar 

  26. V.R. Shinde, C.D. Lokhande, R.S. Mane, S. Han, Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect. Appl. Surf. Sci. 245, 407 (2005)

    Article  ADS  Google Scholar 

  27. G. Hodes, A.A. Yaro, F. Decker, P. Motisuke, Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. Phys. Rev. B 36, 4215 (1987)

    Article  ADS  Google Scholar 

  28. S.M. Sze, Semiconductor Devices, Physics and Technology (Wiley, New York, 1985)

    Google Scholar 

  29. R. Dalven, Introduction to Applied Solid State Physics (Plenum Press, New York, 1990)

    Book  Google Scholar 

  30. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  31. A.E. Jimenez-Gonzalez, J.A. Soto Urueta, R. Suarez-Parra, Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique. J. Cryst. Growth 192, 430 (1998)

    Article  ADS  Google Scholar 

  32. S. Major, A. Banerjee, K.L. Chopra, Thickness-dependent properties of indium-doped ZnO films. J. Mater. Res. 1, 300 (1986)

    Article  ADS  Google Scholar 

  33. J.W. Orton, M.J. Powell, The hall effect in polycrystalline and powdered semiconductors. Rep. Prog. Phys. 43, 1263 (1980)

    Article  ADS  Google Scholar 

  34. E. Hahn, Some electrical properties of zinc oxide semiconductor. J. Appl. Phys. 22, 855 (1951)

    Article  ADS  Google Scholar 

  35. J. Lee, J.H. Hwang, J. Mashek, T. Mason, A. Miller, R. Siegel, Impedance spectroscopy of grain boundaries in nanophase ZnO. J. Mater. Res. 10, 2295 (1995)

    Article  ADS  Google Scholar 

  36. V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane, S.H. Han, Mn doped and undoped ZnO films: a comparative structural, optical and electrical properties study. Mater. Chem. Phys. 96, 326 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Commission of Mustafa Kemal University (Project No. 1102 M 0101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kahraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahraman, S., Bayansal, F., Çakmak, H.M. et al. Synthesis and characterization of undoped and tin-doped ZnO nanostructures. Appl. Phys. A 109, 87–93 (2012). https://doi.org/10.1007/s00339-012-7093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7093-1

Keywords

Navigation