Skip to main content
Log in

Dual IR laser shattering of a water microdroplet

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ion desorption from the infrared (IR) laser shattering of water microdroplets (∅90 μm in diameter) was experimentally examined by ion current measurements coupled with time-resolved imaging by a charge-coupled-device camera. When a microdroplet was shattered by simultaneous illumination by two IR lasers (λ=2.9 μm) from both the left- and right-hand sides, the time-resolved imaging shows that a lot of small fragments of splash spread around the droplet. The spatial distributions of the small fragments were symmetrically compressed. The resulting fragment swarm was effectively introduced into a vacuum chamber through an inlet skimmer ∅0.3–0.4 mm in diameter. The ion current measured from a 10−6 mol/m3 NaCl water solution microdroplet using two lasers was considerably enhanced compared to that by single IR laser shattering. When one of the two IR lasers was delayed by 0–1000 μs, the ion current gradually decreased with the delay time, and dropped substantially at delays longer than 100 ns. The results are ascribed to dynamical processes following the multi-photon excitation. The dual IR laser ablation of a liquid droplet can enhance the efficiency of ion formation with a lower dispersion velocity, which can be conveniently combined with time-of-flight mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Kleinekofort, J. Avdiev, B. Brutschy, Int. J. Mass Spectrom. Ion Process. 152, 135 (1996)

    Article  ADS  Google Scholar 

  2. N. Horimoto, J. Kohno, F. Mafuné, T. Kondow, J. Phys. Chem. A 103, 9569 (1999)

    Article  Google Scholar 

  3. D.E. Otten, A.J. Trevitt, B.D. Nichols, G.F. Metha, M.A. Buntine, J. Phys. Chem. A 107, 6130 (2003)

    Article  Google Scholar 

  4. A. Charvat, E. Lugovoj, M. Faubel, B. Abel, Eur. Phys. J. D 20, 573 (2002)

    Article  ADS  Google Scholar 

  5. N. Morgner, H.-D. Barth, B. Brutschy, Aust. J. Chem. 59, 109 (2006)

    Article  Google Scholar 

  6. J. Kohno, N. Toyama, T. Kondow, Chem. Phys. Lett. 420, 146 (2006)

    Article  ADS  Google Scholar 

  7. E. Rapp, A. Charvát, A. Beinsen, U. Plessmann, U. Reichl, A. Seidel-Morgenstern, H. Urlaub, B. Abel, Anal. Chem. 81, 443 (2009)

    Article  Google Scholar 

  8. A. Terasaki, J. Phys. Chem. A 111, 7671 (2007)

    Article  Google Scholar 

  9. A. Charvat, B. Abel, Phys. Chem. Chem. Phys. 9, 3335 (2007)

    Article  Google Scholar 

  10. A. Terasaki, T. Kondow, Chem. Phys. Lett. 474, 57 (2009)

    Article  ADS  Google Scholar 

  11. J. Kohno, F. Mafuné, T. Kondow, J. Phys. Chem. A 108, 971 (2004)

    Article  Google Scholar 

  12. J. Kohno, T. Kondow, Chem. Lett. 39, 1220 (2010)

    Article  Google Scholar 

  13. A. Terasaki, in Advances in Multi-photon Processes and Spectroscopy, ed. by S.H. Lin, A.A. Villaeys, Y. Fujimura, vol. 19 (World Scientific, Singapore, 2010), pp. 32–64

    Chapter  Google Scholar 

  14. R.K. Chang, J.H. Eickmans, W.-F. Hsieh, C.F. Wood, J.-Z. Zhang, J.-B. Zheng, Appl. Opt. 27, 2377 (1988)

    Article  ADS  Google Scholar 

  15. J. Noack, A. Vogel, IEEE J. Quantum Electron. 35, 1156 (1999)

    Article  ADS  Google Scholar 

  16. A. Brodeur, S.L. Chin, J. Opt. Soc. Am. B 16, 637 (1999)

    Article  ADS  Google Scholar 

  17. C. Favre, V. Boutou, S.C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R.K. Chang, L. Woeste, J.-P. Wolf, Phys. Rev. Lett. 89, 035002 (2002)

    Article  ADS  Google Scholar 

  18. A. Sugiyama, A. Nakajima, (2012) submitted

  19. C.W. Robertson, D. Williams, J. Opt. Soc. Am. 61, 1316 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by an XFEL Usage Promotion Project of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and by a MEXT-supported Program for the Strategic Research Foundation at Private Universities, 2009–2013. The authors are grateful to Dr. S. Nagaoka for his initial contribution and also to Professors F. Mafuné and J. Kohno for the instrumentation, and A.S. expresses his gratitude for a research fellowship from the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Nakajima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiyama, A., Nakajima, A. Dual IR laser shattering of a water microdroplet. Appl. Phys. A 109, 31–37 (2012). https://doi.org/10.1007/s00339-012-7086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7086-0

Keywords

Navigation