Skip to main content
Log in

A lithography-independent and fully confined fabrication process of phase-change materials in metal electrode nanogap with 16-μA threshold current and 80-mV SET voltage

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper,we fabricate a lateral phase change memory device composed of a Ge2Sb2Te5 nanowire (GST NW) fully confined in a tungsten electrode nanogap. A SiNx spacer is used not only as etch mask for the fabrication of the GST NW, but also as sacrificial layer for the lift-off process, which makes it feasible to fully confine the GST NW in the metal electrode nanogap. Electrical characterization shows that the device has unprecedentedly low threshold current and SET voltage of only 16 μA and 80 mV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.R. Ovshinsky, Phys. Rev. Lett. 21(20), 1450 (1968)

    Article  ADS  Google Scholar 

  2. G. Atwood, R. Bez, in Int. Symp. VLSI Technology, Systems and Applications (VLSI-TSA), Proc. Tech. Papers (2007), p. 100

    Google Scholar 

  3. D.S. Chao, H.H. Hsu, M.J. Chen, Y.C. Chen, F. Chen, C.M. Lee, P.H. Yen, C.W. Chen, W.H. Wang, W.S. Chen, C.S. Lien, M.J. Kao, M.J. Tsai, in Int. Symp. VLSI Technology, Systems and Applications (VLSI-TSA), Proc. Tech. Papers (2007), p. 94

    Google Scholar 

  4. M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Nat. Mater. 4(4), 347 (2005)

    Article  ADS  Google Scholar 

  5. G.H. Oh, Y.L. Park, J.I. Lee, D.H. Im, J.S. Bae, D.H. Kim, D.H. Alm, H. Horii, S.O. Park, H.S. Yoon, I.S. Park, Y.S. Ko, U.I. Chung, J.T. Moon, in Symp. VLSI Technology, Dig. Tech. Papers (2009), p. 220

    Google Scholar 

  6. Y. Sasago, M. Kinoshita, T. Morikawa, K. Kurotsuchi, S. Hanzawa, T. Mine, A. Shima, Y. Fujisaki, H. Kume, H. Moriya, N. Takaura, K. Torii, in Symp. VLSI Technology, Dig. Tech. Papers (2009), p. 24

    Google Scholar 

  7. I.S. Kim, S.L. Cho, D.H. Im, E.H. Cho, D.H. Kim, G.H. Oh, D.H. Ahn, S.O. Park, S.W. Nam, J.T. Moon, C.H. Chung, in Symp VLSI Tech (2010), p. 203

    Chapter  Google Scholar 

  8. D.H. Im, J.I. Lee, S.L. Cho, H.G. An, D.H. Kim, I.S. Kim, H. Park, D.H. Ahn, H. Horii, S.O. Park, U.I. Chung, J.T. Moon, in IEEE Int. Electron Devices Meet., Tech. Dig. (2008), p. 211

    Google Scholar 

  9. D. Roy, M.A.A. in ’t Zandt, R.A.M. Wolters, C.E. Timmering, J.H. Klootwijk, in NVMTS: 10th Annu. Non-Volatile Memory Technology Symp (2009), p. 12

    Chapter  Google Scholar 

  10. S.G. Yoon, J.K. Ahn, K.W. Park, H.J. Jung, Nano Lett. 10(2), 472 (2010)

    Article  ADS  Google Scholar 

  11. E. Pop, F. Xiong, A.D. Liao, D. Estrada, Science 332(6029), 568 (2011)

    Article  ADS  Google Scholar 

  12. S.H. Lee, D.K. Ko, Y. Jung, R. Agarwal, Appl. Phys. Lett. 89(22), 223116 (2006)

    Article  ADS  Google Scholar 

  13. B. Yu, S.Y. Ju, X.H. Sun, G. Ng, T.D. Nguyen, M. Meyyappan, D.B. Janes, Appl. Phys. Lett. 91(13), 133119 (2007)

    Article  ADS  Google Scholar 

  14. R. Agarwal, S.H. Lee, Y. Jung, Nat. Nanotechnol. 2(10), 626 (2007)

    Article  ADS  Google Scholar 

  15. H.K. Park, D. Yu, J.Q. Wu, Q. Gu, J. Am. Chem. Soc. 128(25), 8148 (2006)

    Article  Google Scholar 

  16. H. Park, J.S. Lee, S. Brittman, D. Yu, J. Am. Chem. Soc. 130(19), 6252 (2008)

    Article  Google Scholar 

  17. R. Agarwal, Y. Jung, S.H. Lee, A.T. Jennings, Nano Lett. 8(7), 2056 (2008)

    Article  ADS  Google Scholar 

  18. Y. Zhang, S.B. Kim, J.P. McVittie, H. Jagannathan, J.B. Ratchford, C.E.D. Chidsey, Y. Nishi, H.S.P. Wong, in Symp. VLSI Technology, Dig. Tech. Papers (2007), p. 98

    Google Scholar 

  19. A. Schrott, H.L. Lung, T. Happ, C. Lam, in Int. Symp. VLSI Technology, Systems and Applications (VLSI-TSA), Proc. Tech. Papers (2007), p. 106

    Google Scholar 

  20. F.J. Jedema, M.A.A. Zandt, R.A.M. Wolters, D.T. Castro, G.A.M. Hurkx, R. Delhougne, in Proc. Joint Non-Volatile Semiconductor Memory Workshop Int. Conf. Memory Technology and Design (2008), p. 43

    Chapter  Google Scholar 

  21. J.Y. Zhang, X.F. Wang, X.D. Wang, H.L. Ma, K.F. Cheng, Z.C. Fan, Y. Li, A. Ji, F.H. Yang, Appl. Phys. Lett. 96(21), 213505 (2010)

    Article  ADS  Google Scholar 

  22. J. Liu, B. Yu, M.P. Anantram, IEEE Electron Device Lett. 32(10), 1340 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National High-tech Research and Development Program (863) under the grant number 2008AA031402, and the National Natural Science Foundation of China under the grant numbers 61076077 and 61106120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhua Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Wang, X., Zhang, J. et al. A lithography-independent and fully confined fabrication process of phase-change materials in metal electrode nanogap with 16-μA threshold current and 80-mV SET voltage. Appl. Phys. A 110, 173–177 (2013). https://doi.org/10.1007/s00339-012-7083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7083-3

Keywords

Navigation