Advertisement

Applied Physics A

, Volume 109, Issue 1, pp 95–100 | Cite as

Structural inhomogeneity and piezoelectric enhancement in ZnO nanobelts

  • Kasra Momeni
  • Anjana Asthana
  • Abhishek Prasad
  • Yoke K. Yap
  • Reza Shahbazian-Yassar
Article

Abstract

In this work, piezoelectricity of individual ZnO nanobelts grown along the [0 1 ī 0] direction is studied using piezoresponse force microscopy (PFM). It is found that the effective piezoelectric coefficient of these NBs, \(d_{33}^{\mathrm{eff}}\), is increasing from 2.7 pm/V at 30 kHz to 44 pm/V at 150 kHz. The results were explained by the Debye model, where structural inhomogeneity in our NBs was shown to be responsible for piezoelectric enhancement.

Keywords

Piezoelectric Property Relaxation Behavior Piezoelectric Coefficient Debye Model Periodically Pole Lithium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank NSF-CMMI Grant no. 0926819 and NSF-DMR Grant no. 0820884 for providing the financial support.

References

  1. 1.
    A. Dal Corso, M. Posternak, R. Resta, A. Baldereschi, Phys. Rev. B, Condens. Matter Mater. Phys. 50, 10715 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Appl. Phys. Lett. 81, 1869 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    T. Shibata, K. Unno, E. Makino, Y. Ito, S. Shimada, Sens. Actuators A, Phys. 102, 106 (2002) CrossRefGoogle Scholar
  4. 4.
    Z.L. Wang, J. Song, Science 312, 242 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    A.L. Kholkin, C. Wutchrich, D.V. Taylor, N. Setter, Rev. Sci. Instrum. 67, 1935 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    R. Winters, M. Reinermann, C. Enss, G. Weiss, S. Hunklinger, Measurement of the piezoelectricity of films with scanning tunneling microscopy. Conf. Proc. 13, 1316 (1995) Google Scholar
  7. 7.
    A.G. Agronin, Y. Rosenwaks, G.I. Rosenman, Nano Lett. 3, 169 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    J.A. Christman, J.R.R. Woolcott, A.I. Kingon, R.J. Nemanich, Appl. Phys. Lett. 73, 3851 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    C. Harnagea, A. Pignolet, M. Alexe, D. Hesse, U. Gösele, Appl. Phys. A, Mater. Sci. Process. 70, 261 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    V.V. Shvartsman, A.L. Kholkin, N.A. Pertsev, Appl. Phys. Lett. 81, 3025 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    A. Kholkin, I. Bdikin, D. Kiselev, V. Shvartsman, S.H. Kim, J. Electroceram. 19, 83 (2007) CrossRefGoogle Scholar
  12. 12.
    D.A. Scrymgeour, T.L. Sounart, N.C. Simmons, J.W.P. Hsu, J. Appl. Phys. 101, 014316 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    M.-H. Zhao, Z.-L. Wang, S.X. Mao, Nano Lett. 4, 587 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    A. Kholkin, Ferroelectrics 221, 219 (1999) CrossRefGoogle Scholar
  15. 15.
    L. Schuler, N. Valanoor, P. Miller, I. Guy, R. Reeves, M. Alkaisi, J. Electron. Mater. 36, 507 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    S.L. Mensah, V.K. Kayastha, Y.K. Yap, J. Phys. Chem. C 111, 16092 (2007) CrossRefGoogle Scholar
  17. 17.
    A. Asthana, K. Momeni, A. Prasad, Y.K. Yap, R.S. Yassar, Appl. Phys. Lett. 95, 172106 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy Google Scholar
  19. 19.
    S.V. Kalinin, D.A. Bonnell, Phys. Rev. B, Condens. Matter Mater. Phys. 65, 125408 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    M. Alexe, A. Gruverman, Nanoscale Characterisation of Ferroelectric Materials: Scanning Probe Microscopy Approach (Springer, Berlin, 2004) Google Scholar
  21. 21.
    T. Jungk, A. Hoffmann, E. Soergel, Appl. Phys. Lett. 89, 163507 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    M. Jazbinšek, M. Zgonik, Appl. Phys. B, Lasers Opt. 74, 407 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    D. Damjanovic, M.D. Maeder, P.D. Martin, C. Voisard, N. Setter, J. Appl. Phys. 90, 5708 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    J.-F. Li, P. Moses, D. Viehland, Rev. Sci. Instrum. 66, 215 (1995) ADSCrossRefGoogle Scholar
  25. 25.
    F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B, Condens. Matter Mater. Phys. 56, R10024 (1997) ADSCrossRefGoogle Scholar
  26. 26.
    G. Bertotti, I.D. Mayergoyz, The Science of Hysteresis (Elsevier, Amsterdam, 2006) Google Scholar
  27. 27.
    P.J.W. Debye, The Collected Papers of Peter J.W. Debye (Interscience, New York, 1954) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kasra Momeni
    • 1
  • Anjana Asthana
    • 2
  • Abhishek Prasad
    • 3
  • Yoke K. Yap
    • 3
  • Reza Shahbazian-Yassar
    • 1
  1. 1.Department of Mechanical EngineeringMichigan Technological UniversityHoughtonUSA
  2. 2.Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonUSA
  3. 3.Department of PhysicsMichigan Technological UniversityHoughtonUSA

Personalised recommendations