Skip to main content
Log in

Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanoparticles were synthesized using pulsed laser ablation of a Zn metal plate in deionized water without using surfactant. The beam of a Q-switched Nd:YAG laser of 1064-nm and 532-nm wavelengths at 6-ns pulse width and different fluences is employed to irradiate the solid target in water. Transmission electron microscopy images revealed that the size of the ZnO nanoparticles formed by the 532-nm wavelength laser beam is smaller than that of the nanoparticles generated by the 1064-nm wavelength laser beam. The room-temperature photoluminescence spectra of the ZnO nanoparticles show intense violet emission along with emission in blue and green bands. The excellent ultraviolet emission indicates that the ZnO nanostructures have a low defect concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Spanhel, M.A. Anderson, Am. Chem. Soc. 112, 2278 (1990)

    Article  Google Scholar 

  2. L. Qu, X. Peng, Am. Chem. Soc. 124, 2049 (2002)

    Article  Google Scholar 

  3. A.E. Suliman, Y. Tang, L. Xu, Sol. Cells 91, 1658 (2007)

    Article  Google Scholar 

  4. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, J. Photochem. Photobiol. A, Chem. 148, 57 (2002)

    Article  Google Scholar 

  5. A.K. Chawla, D. Kaur, R. Chandra, Opt. Mater. 29, 995 (2007)

    Article  ADS  Google Scholar 

  6. M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Appl. Surf. Sci. 256, 298 (2009)

    Article  ADS  Google Scholar 

  7. C.-C. Huang, C.-S. Yeh, C.-J. Ho, J. Phys. Chem. B 108, 4940 (2004)

    Article  Google Scholar 

  8. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 8333 (2000)

    Article  Google Scholar 

  9. C. He, T. Sasaki, Y. Zhou, Y. Shimizu, N. Koshizaki, Adv. Funct. Mater. 17, 3554 (2007)

    Article  Google Scholar 

  10. J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, J. Am. Chem. Soc. 126, 7176 (2004)

    Article  Google Scholar 

  11. C.H. Liang, Y. Shimizu, M. Masuda, T. Sasaki, N. Koshizaki, Chem. Mater. 16, 963 (2004)

    Article  Google Scholar 

  12. B. Srinivasa Rao, B. Rajesh Kumar, V. Rajagopal Reddy, T. Subba Rao, G. Venkata Chalapathi, Chalcogenide Lett. 8(1), 39 (2011)

    Google Scholar 

  13. U. Koch, A. Fojtik, H. Weller, A. Henglein, Chem. Phys. Lett. 122, 507 (1985)

    Article  ADS  Google Scholar 

  14. E.M. Wong, J.E. Bonevich, P.C. Searson, J. Phys. Chem. B 102, 7770 (1998)

    Article  Google Scholar 

  15. L.E.J. Brus, Phys. Chem. B 90, 2555 (1986)

    Google Scholar 

  16. D. Dozier, S. Palchoudhury, Y. Bao, J. Sci. Health Univ. Alabama 7, 16 (2010)

    Google Scholar 

  17. Q.A. Drmosh, M.A. Gondal, Z.H. Yamani, T.A. Saleh, Appl. Surf. Sci. 256, 4661 (2010)

    Article  ADS  Google Scholar 

  18. H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, J. Phys. Chem. B 109, 18260 (2005)

    Article  Google Scholar 

  19. T.K. Kundu, N. Karak, P. Barik, S. Saha, Int. J. Soft Comput. Eng. 1, 19 (2011)

    Google Scholar 

  20. G. Kenanakis, M. Androulidaki, E. Koudoumas, C. Savvakis, N. Katsarakis, Superlattices Microstruct. 42, 473 (2007)

    Article  ADS  Google Scholar 

  21. C. He, T. Sasaki, Y. Shimizu, N. Koshizaki, Appl. Surf. Sci. 254, 2196 (2008)

    Article  ADS  Google Scholar 

  22. F. Xu, Z.Y. Yuan, G.H. Du, T.Z. Ren, C. Bouvy, M. Halasa, B.L. Su, Nanotechnology 17, 588 (2006)

    Article  ADS  Google Scholar 

  23. Z.W. Liu, C.K. Ong, T. Yu, Z.X. Shen, Appl. Phys. Lett. 88, 053110 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dorranian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorranian, D., Solati, E. & Dejam, L. Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A 109, 307–314 (2012). https://doi.org/10.1007/s00339-012-7073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7073-5

Keywords

Navigation