Skip to main content
Log in

Ultra-fast movies of thin-film laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump–probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid–gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid–gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Zoppel, H. Huber, G.A. Reider, Appl. Phys. A 89, 1 (2007)

    Article  Google Scholar 

  2. J. Bohandy, B.F. Kim, F.J. Adrian, J. Appl. Phys. 60, 4 (1986)

    Article  Google Scholar 

  3. G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, H.P. Huber, Appl. Phys. A 102, 1 (2011)

    Article  Google Scholar 

  4. W.S. Wong, T. Sands, N.W. Cheung, M. Kneissl, D.P. Bour, P. Mei, L.T. Romano, N.M. Johnson, Appl. Phys. Lett. 75, 10 (1999)

    Article  Google Scholar 

  5. P. Peyre, R. Fabbro, Opt. Quantum Electron. 27, 12 (1995)

    Google Scholar 

  6. G. Heise, M. Dickmann, M. Domke, A. Heiss, T. Kuznicki, J. Palm, I. Richter, H. Vogt, H.P. Huber, Appl. Phys. A 104, 1 (2011)

    Article  Google Scholar 

  7. S. Hermann, N.-P. Harder, R. Brendel, D. Herzog, H. Haferkamp, Appl. Phys. A 99, 1 (2010)

    Article  Google Scholar 

  8. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 2 (1990)

    Article  Google Scholar 

  9. C.S. Montross, T. Wei, L. Ye, G. Clark, Y.-W. Mai, Int. J. Fatigue 24, 10 (2002)

    Article  Google Scholar 

  10. J. Bohandy, B.F. Kim, F.J. Adrian, A.N. Jette, J. Appl. Phys. 63, 4 (1988)

    Article  Google Scholar 

  11. V. Schultze, M. Wagner, Appl. Surf. Sci. 52, 4 (1991)

    Article  Google Scholar 

  12. T. Sano, H. Yamada, T. Nakayama, I. Miyamoto, Appl. Surf. Sci. 186, 1 (2002)

    Article  Google Scholar 

  13. F.J. Adrian, J. Bohandy, B.F. Kim, A.N. Jette, J. Vac. Sci. Technol. B 5, 5 (1987)

    Article  Google Scholar 

  14. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 2 (1997)

    Google Scholar 

  15. S. Preuss, A. Demuchuk, M. Stuke, Appl. Phys. A 61, 1 (1995)

    Article  Google Scholar 

  16. S. Preuss, E. Matthias, M. Stuke, Appl. Phys. A 59, 1 (1994)

    Article  Google Scholar 

  17. A.B. Bullock, P.R. Bolton, J. Appl. Phys. 85, 1 (1999)

    Article  Google Scholar 

  18. I. Zergioti, S. Mailis, N.A. Vainos, C. Fotakis, S. Chen, C.P. Grigoropoulos, Appl. Surf. Sci. 127–129, 601 (1998)

    Article  Google Scholar 

  19. I. Zergioti, D.G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, A. Rode, Appl. Surf. Sci. 208–209, 177 (2003)

    Article  Google Scholar 

  20. A.D. Compaan, I. Matulionis, S. Nakade, Opt. Lasers Eng. 34, 1 (2000)

    Article  Google Scholar 

  21. G. Heise, A. Heiss, C. Hellwig, T. Kuznicki, H. Vogt, J. Palm, H.P. Huber, Prog. Photovolt. (2011). doi:10.1002/pip.1261

    Google Scholar 

  22. G. Heise, J. Konrad, S. Sarrach, J. Sotrop, H.P. Huber, Proc. SPIE Int. Soc. Opt. Eng. 7925, 11 (2011)

    Google Scholar 

  23. G. Heise, D. Trappendreher, F. Ilchmann, R.S. Weiss, B. Wolf, H.P. Huber, Proc. SPIE Int. Soc. Opt. Eng. 8247, 32 (2012)

    Google Scholar 

  24. H.P. Huber, F. Herrnberger, S. Kery, S. Zoppel, Proc. SPIE Int. Soc. Opt. Eng. 6881, 45 (2008)

    Google Scholar 

  25. J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, P. Alloncle, J. Phys. D, Appl. Phys. 39, 3 (2006)

    Article  Google Scholar 

  26. J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, T. Itina, Appl. Surf. Sci. 252, 4814 (2006)

    Article  ADS  Google Scholar 

  27. H.P. Huber, M. Englmaier, C. Hellwig, A. Heiss, T. Kuznicki, M. Kemnitzer, H. Vogt, R. Brenning, J. Palm, Proc. SPIE Int. Soc. Opt. Eng. 7203, 24 (2009)

    Google Scholar 

  28. G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, H.P. Huber, J. Phys. D, Appl. Phys. 45, 315303 (2012)

    Article  ADS  Google Scholar 

  29. M.C. Downer, R.L. Fork, C.V. Shank, J. Opt. Soc. Am. B 2, 4 (1985)

    Article  Google Scholar 

  30. D. Von Der Linde, K. Sokolowski-Tinten, Appl. Surf. Sci. 154–155, 1 (2000)

    Article  Google Scholar 

  31. J. Bonse, G. Bachelier, J. Siegel, J. Solis, H. Sturm, J. Appl. Phys. 103, 5 (2008)

    Article  Google Scholar 

  32. I. Mingareev, A. Horn, J. Appl. Phys. 106, 1 (2009)

    Article  Google Scholar 

  33. D. Von Der Linde, K. Sokolowski-Tinten, J. Bialkowski, Appl. Surf. Sci. 109–110, 1 (1997)

    Article  Google Scholar 

  34. J.P. McDonald, J.A. Nees, S.M. Yalisove, J. Appl. Phys. 102, 6 (2007)

    Google Scholar 

  35. C.W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K.R. Wilson, D. Von Der Linde, C.P.J. Barty, Science 286, 5443 (1999)

    Article  Google Scholar 

  36. A. Barty, S. Boutet, M.J. Bogan, S. Hau-Riege, S. Marchesini, K. Sokolowski-Tinten, N. Stojanovic, R. Tobey, H. Ehrke, A. Cavalleri, S. Duesterer, M. Frank, S. Bajt, B.W. Woods, M.M. Seibert, J. Hajdu, R. Treusch, H.N. Chapman, Nat. Photonics 2, 7 (2008)

    Google Scholar 

  37. D. Young, R.C.Y. Auyeung, A. Pique, D.B. Chrisey, D.D. Dlott, Appl. Phys. Lett. 78, 21 (2001)

    Article  Google Scholar 

  38. C. Unger, M. Gruene, L. Koch, J. Koch, B.N. Chichkov, Appl. Phys. A 103, 2 (2011)

    Article  Google Scholar 

  39. D.D. Dlott, Appl. Surf. Sci. 197–198, 181 (2002)

    Google Scholar 

  40. S.G. Koulikov, D.D. Dlott, J. Photochem. Photobiol. A, Chem. 145, 3 (2001)

    Article  Google Scholar 

  41. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, S.I. Anisimov, Appl. Phys. A 79, 4 (2004)

    Article  Google Scholar 

  42. S.K. Sundaram, E. Mazur, Nat. Mater. 1, 4 (2002)

    Article  Google Scholar 

  43. M. Domke, G. Heise, I. Richter, S. Sarrach, H.P. Huber, Phys. Procedia 12, 2 (2011)

    Article  Google Scholar 

  44. M. Domke, S. Rapp, G. Heise, H.P. Huber, Proc. SPIE Int. Soc. Opt. Eng. 8243, 8 (2012)

    Google Scholar 

  45. M. Domke, S. Rapp, M. Schmidt, H.P. Huber, Opt. Express 20(9), 10330 (2012)

    Article  ADS  Google Scholar 

  46. J.M. Liu, Opt. Lett. 7, 5 (1982)

    Google Scholar 

  47. J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, E. Matthias, Chem. Phys. 251, 1 (2000)

    Article  Google Scholar 

  48. J. Jandeleit, A. Horn, R. Weichenhain, E.W. Kreutz, R. Poprawe, Appl. Surf. Sci. 127–129, 885 (1998)

    Article  Google Scholar 

  49. P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. B 73, 13 (2006)

    Article  Google Scholar 

  50. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 27 (2009)

    Article  Google Scholar 

  51. M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, Yu.V. Petrov, V.E. Fortov, V.A. Khokhlov, Appl. Surf. Sci. 253, 15 (2007)

    Article  Google Scholar 

  52. P.E. Schoen, A.J. Campillo, Appl. Phys. Lett. 45, 10 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety within the project ‘SECIS’, under Grant No. 0325043, and by the German Federal Ministry of Education and Research within the project ‘METASOLAR’, under Grant No. 02PO2851. We thank the company ‘AVANCIS’ for providing the molybdenum samples, and Robert Maier as well as Brenda Siller for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Domke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domke, M., Rapp, S., Schmidt, M. et al. Ultra-fast movies of thin-film laser ablation. Appl. Phys. A 109, 409–420 (2012). https://doi.org/10.1007/s00339-012-7072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7072-6

Keywords

Navigation