Skip to main content
Log in

Study of third-harmonic generation in zigzag carbon nanotubes using the Green function approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We study the frequency behavior of third-order nonlinear optical harmonic of metallic and semiconductor zigzag carbon nanotubes. The tight binding model Hamiltonian is considered for electrons on the rolled honeycomb lattice. Based on the relation between nonlinear optical susceptibility and four current correlation function, the third harmonic can be obtained using Green’s function. The effect of the radius of the nanotube on the susceptibility has been investigated. Furthermore, the role of temperature on the behavior of third-order harmonic is studied. The contribution of interband transitions due to the quantum aspects has been brought within the nonlinear response theory as a generalization of the Kubo formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.-C. Charlier, X. Blase, S. Rosche, Rev. Mod. Phys. 79, 677 (2007)

    Article  ADS  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  3. M.F. Lin, Phys. Rev. B 62, 13153 (2000)

    Article  ADS  Google Scholar 

  4. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  5. M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris, Carbon Nanotubes (Springer, Berlin, 2001)

    Book  Google Scholar 

  6. V.A. Margulis, T.A. Sizikova, Physica B 245, 173 (1998)

    Article  ADS  Google Scholar 

  7. V.A. Margulis, J. Phys. Condens. Matter 11, 3065 (1999)

    Article  ADS  Google Scholar 

  8. V.A. Margulis, E.A. Gaiduk, E.N. Zhidkin, Diam. Relat. Mater. 8, 1240 (1999)

    Article  ADS  Google Scholar 

  9. X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, M. Wan, Appl. Phys. Lett. 74, 164 (1999)

    Article  ADS  Google Scholar 

  10. V.A. Margulis, E.A. Gaiduk, E.N. Zhidkin, Diam. Relat. Mater. 10, 27 (2001)

    Article  ADS  Google Scholar 

  11. A.M. Nemilentsau, G.Ya. Slepyan, A.A. Khrutchinskii, S.A. Maksimenko, Carbon 44, 2246 (2006)

    Article  Google Scholar 

  12. C. Zhang, K. Guo, S. Liang, Chem. Phys. Lett. 433, 101 (2006)

    Article  ADS  Google Scholar 

  13. C. Stanciu, E. Ehlich, V. Petrov, O. Steinkellner, J. Hermann, I.V. Hertel, G.Ya. Slepyan, A.A. Khrutchinski, S.A. Maksimenko, F. Rotermund, E.E.B. Campbell, F. Rohmund, Appl. Phys. Lett. 81, 4064 (2002)

    Article  ADS  Google Scholar 

  14. L. Jensen, P. Astrand, K.V. Mikkelsen, Nano Lett. 3, 661 (2003)

    Article  ADS  Google Scholar 

  15. D.A. Akimov, M.V. Alfimov, S.O. Konorov, A.A. Ivanov, S. Botti, A.A. Podshivalov, R. Ciardi, L. De Dominicis, L.S. Asilyan, R. Fantoni, A.M. Zheltikov, J. Exp. Theor. Phys. 98, 220 (2004)

    Article  ADS  Google Scholar 

  16. L. De Dominicis, S. Botti, L.S. Asilyan, R. Ciardi, R. Fantoni, M.L. Terranova, A. Fiori, S. Orlanducci, R. Appolloni, Appl. Phys. Lett. 85, 1418 (2004)

    Article  ADS  Google Scholar 

  17. W. Wu, Phys. Rev. Lett. 9, 1119 (1988)

    Article  ADS  Google Scholar 

  18. G. Grosso, G.P. Parravicini, Solid State Physics (Academic Press, Singapore, 2000)

    Google Scholar 

  19. R.W. Boyd, Nonliear Optics, 3rd edn. (Academic Press, San Diego, 2008)

    Google Scholar 

  20. G.D. Mahan, Many Particle Physics (Plenum Press, New York, 1993)

    Google Scholar 

  21. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  22. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 78, 1997 (1932)

    Google Scholar 

  23. T. Kampfrath, K. von Volkmann, C.M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, L. Perfetti, Phys. Rev. Lett. 101, 267403 (2008)

    Article  ADS  Google Scholar 

  24. E. Malic, J. Maultzsch, S. Reich, A. Knorr, Phys. Rev. B 82, 035433 (2010)

    Article  ADS  Google Scholar 

  25. M. Ichida, S. Saito, T. Nakano, Y. Feng, Y. Miyata, K. Yanagi, H. Kataura, H. Ando, Solid State Commun. 151, 1696 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Rezania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezania, H., Daneshfar, N. Study of third-harmonic generation in zigzag carbon nanotubes using the Green function approach. Appl. Phys. A 109, 503–508 (2012). https://doi.org/10.1007/s00339-012-7063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7063-7

Keywords

Navigation