Skip to main content
Log in

Simulation analysis of the effects of defect density on the performance of p-i-n InGaN solar cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper indicated a simulation study to optimizing the p-i-n InGaN homojunction solar cells. From the simulation results, it was found that optimized value of cell thickness is 1.3 μm and a maximum energy conversion about 20 % can be achieved in 1015 cm−3 defect concentration. It is shown that i-layer quality is a dominant factor in determining the performance of the cell. This result is consistent with the fact that InGaN p-i-n homojunction solar cell with higher densities of defects and dislocations exhibits a lower J sc and V oc, and consequently lower efficiency of the cell. Simulation results demonstrated that high-quality InGaN alloy is necessary to fabricate a high performance cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002)

    Article  ADS  Google Scholar 

  2. S.-W. Feng, C.-M. Lai, C.-H. Chen, W.-C. Sun, L.-W. Tu, J. Appl. Phys. 108, 093118 (2010)

    Article  ADS  Google Scholar 

  3. A. Asgari, K. Khalili, Sol. Energy Mater. Sol. Cells 95, 3124–3129 (2011)

    Article  Google Scholar 

  4. H. Movla, F. Sohrabi, J. Fathi, A. Nikniazi, H. Babaei, K. Khalili, Turk. J. Phys. 34, 97–106 (2010)

    Google Scholar 

  5. A. Barnett et al., Prog. Photovolt. 17, 75–83 (2009)

    Article  Google Scholar 

  6. R. Dahal, B. Pantha, J. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 94, 063505 (2009)

    Article  ADS  Google Scholar 

  7. B.R. Jampana, A.G. Melton, M. Jamil, N.N. Faleev, R.L. Opila, I.T. Ferguson, C.B. Honsberg, IEEE Electron Device Lett. 31, 32–34 (2010)

    Article  ADS  Google Scholar 

  8. N.E. Gorji, H. Movla, F. Sohrabi, A. Hosseinpour, M. Rezaei, H. Babaei, Physica E, Low-Dimens. Syst. Nanostruct. 42, 2353 (2010)

    Article  ADS  Google Scholar 

  9. M.A. Green, in Proceedings of the Fourth IEEE World Conference on Photovoltaic Energy Conversion, Waikoloa, USA, 7–12 May 2006 (IEEE Press, Piscataway, 2006), p. 15

    Chapter  Google Scholar 

  10. A. Luque, A. Marti, Prog. Photovolt. 9, 73 (2001)

    Article  Google Scholar 

  11. H. Movla, N.E. Gorji, F. Sohrabi, A. Hosseinpour, H. Babaei, in Proceeding of the 2th International Conference on Nuclear and Renewable Energy Resources (NURER 2010), Ankara, Turkey, 4–7 July 2010

    Google Scholar 

  12. A. Dmitriev, A. Oruzheinikov, J. Appl. Phys. 86, 3241–3246 (1999)

    Article  ADS  Google Scholar 

  13. R. Quay, Gallium Nitride Electronics (Springer, Berlin, Heidelberg, 2008)

    Google Scholar 

  14. E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W.A. Doolittle, M. Cheung, A. Cartwright, J. Cryst. Growth 288, 218–224 (2006)

    Article  ADS  Google Scholar 

  15. G.F. Brown, J.W. Ager, W. Walukiewicz, J. Wu, Sol. Energy Mater. Sol. Cells 94, 478 (2010)

    Article  Google Scholar 

  16. A. Yamamoto, Md.R. Islam, T.-T. Kang, A. Hashimoto, Phys. Status Solidi C 7, 1309–1316 (2010)

    Article  ADS  Google Scholar 

  17. O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Dwliffle, S. Kurtz, in Proceedings of the 31st IEEE PVSC (2005), pp. 37–42

    Google Scholar 

  18. M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 361–362, 527–532 (2000)

    Article  Google Scholar 

  19. M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Prog. Photovolt. 12, 143–153 (2004)

    Article  Google Scholar 

  20. X. Zhang, X.L. Wang, H.L. Xiao, C.B. Yang, J.X. Ran, C.M. Wang, Q.F. Hou, J.M. Li, J. Phys. D, Appl. Phys. 40, 7335 (2007)

    Article  ADS  Google Scholar 

  21. Z.Z. Bandi, P.M. Bridger, E.C. Piquette, T.C. McGill, Appl. Phys. Lett. 73, 3276 (1998)

    Article  ADS  Google Scholar 

  22. O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T.D. Moustakas, M. Stutzman, Solid State Commun. 97, 365 (1996)

    Article  ADS  Google Scholar 

  23. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)

    Article  ADS  Google Scholar 

  24. J. Verschraegen, M. Burgelman, Thin Solid Films 515, 6276–6279 (2007)

    Article  ADS  Google Scholar 

  25. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510–520 (1961)

    Article  ADS  Google Scholar 

  26. R.A. Street, J. Non-Cryst. Solids 77–78, 1 (1985)

    Article  Google Scholar 

  27. V. Halpern, Philos. Mag., B 54, 473 (1986)

    Article  Google Scholar 

  28. M.E. Levinshtein, S.L. Rumyanstev, M.S. Shur Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001)

    Google Scholar 

  29. O. Jani, I. Ferguson, C. Honsberg, S. Kurtz, Appl. Phys. Lett. 91, 132117 (2007)

    Article  ADS  Google Scholar 

  30. S.J. Fonash, Solar Cell Device Physics, 2nd edn. (Elsevier, San Diego, 2010)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge to Dr. Marc Burgelman, University of Gent, Belgium, for providing the SCAPS simulation software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Movla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movla, H., Salami, D. & Sadreddini, S.V. Simulation analysis of the effects of defect density on the performance of p-i-n InGaN solar cell. Appl. Phys. A 109, 497–502 (2012). https://doi.org/10.1007/s00339-012-7062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7062-8

Keywords

Navigation