Skip to main content
Log in

Room temperature synthesis and characterization of ultralong Cd(OH)2 nanowires: a simple and template-free chemical route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultralong Cd(OH)2 nanowires were fabricated in high yield by a convenient chemical method using alkali medium at room temperature without using any templates. The preparation conditions induce a unilateral growth of nanowires, despite the absence of any template. The length of the nanowires reached several hundreds of micrometers, giving an aspect ratio of a few thousands. The X-ray diffraction shows that the Cd(OH)2 nanostructures crystallized in the wurtzite structure without any special orientation. The photoluminescence spectrum of Cd(OH)2 nanostructures appears as two emission bands: one related to green emission at 475–510 nm, and the other related to deep level emission at 510–540 nm. Also the formation mechanisms of the nanowires are presented. The growth mechanism involves the irreversible and specifically oriented self-assembly of primary nanocrystals and results in the formation of the nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Schema 1

Similar content being viewed by others

References

  1. L. Ouyang, E.S. Thrall, M.M. Deshmukh, H. Park, Adv. Mater. 18, 1437 (2006)

    Article  Google Scholar 

  2. J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N.S. Xu, Z.L. Wang, Adv. Mater. 17, 2107 (2005)

    Article  Google Scholar 

  3. Y. Li, B. Tan, Y. Wu, Chem. Mater. 20, 567 (2008)

    Article  Google Scholar 

  4. K. Lee, P. Keblinski, S.B. Sinnott, Nano Lett. 5, 263 (2005)

    Article  ADS  Google Scholar 

  5. J. Chen, D.H. Bradhurst, S.X. Dou, H.K. Liu, J. Electrochem. Soc. 146, 3606 (1999)

    Article  Google Scholar 

  6. H. Zhang, X.Y. Ma, Y.J. Ji, J. Xu, D.R. Yang, Mater. Lett. 59, 56 (2005)

    Article  Google Scholar 

  7. M. Ristic, S. Popovic, S. Music, Mater. Lett. 58, 2494 (2004)

    Article  Google Scholar 

  8. R.S. Mane, S.H. Han, Electrochem. Commun. 7, 205 (2005)

    Article  Google Scholar 

  9. V.R. Shinde, H.S. Shim, T.P. Gujar, H.J. Kim, W.B. Kim, Adv. Mater. 20, 1008 (2008)

    Article  Google Scholar 

  10. B. Tang, L. Zhou, J. Ge, J. Niu, Z. Shi, Inorg. Chem. 44, 2568 (2005)

    Article  Google Scholar 

  11. D.E. Zhang, X.D. Pan, H. Zhu, S.Z. Li, G.Y. Xu, X.B. Zhang, A.L. Ying, Z.W. Tong, Nanoscale Res. Lett. 3, 284 (2008)

    Article  ADS  Google Scholar 

  12. J.J. Miao, R.L. Fu, J.M. Zhu, K. Xu, J.J. Zhu, H.Y. Chen, Chem. Commun. 28, 3013 (2006)

    Article  Google Scholar 

  13. V.R. Shinde, T.P. Gujar, T. Noda, D. Fujita, C.D. Lokhande, O.S. Joo, J. Phys. Chem. C 113, 14179 (2009)

    Article  Google Scholar 

  14. W. Shi, C. Wang, H. Wang, H. Zhang, Cryst. Growth Des. 6, 915 (2006)

    Article  Google Scholar 

  15. I. Ichinose, J. Huang, Y.H. Luo, Nano Lett. 5, 97 (2005)

    Article  ADS  Google Scholar 

  16. M. Steinhart, Z.H. Jia, A.K. Schaper, R.B. Wehrspohn, U. Gosele, J.H. Wendorff, Adv. Mater. 15, 706 (2003)

    Article  Google Scholar 

  17. C.R. Martin, Science 266, 1961 (1994)

    Article  ADS  Google Scholar 

  18. R.R. He, M. Law, R. Fan, F. Kim, P. Yang, Nano Lett. 2, 1109 (2002)

    Article  ADS  Google Scholar 

  19. Y. Yin, Y. Lu, Y. Sun, Y. Xia, Nano Lett. 2, 427 (2002)

    Article  ADS  Google Scholar 

  20. B. Mayers, X. Jiang, D. Sunderland, B. Cattle, Y. Xia, J. Am. Chem. Soc. 125, 13364 (2003)

    Article  Google Scholar 

  21. B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Chem. Rev. 104, 3893 (2004)

    Article  Google Scholar 

  22. M. Ghaedi, H. Khajesharifi, A. Hemmati Yadkuri, M. Roosta, R. Sahraei, A. Daneshfar, Spectrochim. Acta A 86, 62–68 (2012)

    Article  ADS  Google Scholar 

  23. H.S. Shim, V.R. Shinde, J.W. Kim, T.P. Gujar, O.S. Joo, H.J. Kim, W.B. Kim, Chem. Mater. 21, 1875–1883 (2009)

    Article  Google Scholar 

  24. D.E. Zhang, Q. Xie, H.X. Cai, X.B. Zhang, S.Z. Li, G.Q. Han, A.L. Ying, A.M. Chen, Z.W. Tong, Appl. Surf. Sci. 256, 6224 (2010)

    Article  ADS  Google Scholar 

  25. M. Chen, L. Gao, J. Cryst. Growth 286, 228 (2006)

    Article  ADS  Google Scholar 

  26. A. Goudarzi, G. Motedayen Aval, R. Sahraei, H. Ahmadpoor, Thin Solid Films 516, 4953 (2008)

    Article  ADS  Google Scholar 

  27. G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong, Y. Qian, J. Phys. Chem. B 110, 1632 (2006)

    Article  Google Scholar 

  28. J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y. Qian, J. Phys. Chem. B 109, 9463 (2005)

    Article  Google Scholar 

  29. Y. Tak, K. Yong, J. Phys. Chem. B 109, 19263 (2005)

    Article  Google Scholar 

  30. C.X. Xu, A. Wei, X.W. Sun, Z.L. Dong, J. Phys. D, Appl. Phys. 39, 1690 (2006)

    Article  ADS  Google Scholar 

  31. L.G. Sillen, A.F. Martell (eds.), Stability Constants of Metal–Ion Complexes (Suppl. 1, Special Publication No. 25) (The Chemical Society, London, 1971), pp. 77–85

    Google Scholar 

  32. I. Ichinose, K. Kurashima, T. Kunitake, J. Am. Chem. Soc. 126, 7162 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sahraei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahraei, R., Mihandoost, A., Nabiyouni, G. et al. Room temperature synthesis and characterization of ultralong Cd(OH)2 nanowires: a simple and template-free chemical route. Appl. Phys. A 109, 471–475 (2012). https://doi.org/10.1007/s00339-012-7056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7056-6

Keywords

Navigation