Skip to main content
Log in

Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reports the formation of uniform single layer micro-patterns of graphene on a glass substrate using direct femtosecond laser cutting. The cutting of graphene was achieved in air and argon. By translating the graphene sample with respect to the laser beam, continuous micro-channels were carved. The cutting geometry can be controlled by varying the laser fluence and the scanning path. Also, 1∼2 µm wide graphene micro-ribbons were hatched out. The ablation threshold of graphene was determined to be 0.16∼0.21 J/cm2. With the laser fluence higher than the ablation threshold, graphene was ablated rapidly and removed completely without damaging the glass substrate. Atomic force microscopy (AFM) and Raman spectroscopy have been used to confirm the ablation of graphene. Time domain finite difference modelling was employed to understand the thermal history of the laser ablation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. N. Papasimakis, Z. Luo, Z.X. Shen, F.D. Angelis, E.D. Fabrizio, A.E. Nikolaenko, N.I. Zheludev, Opt. Express 18, 8353 (2010)

    Article  ADS  Google Scholar 

  3. R. Dehbashi, D. Fathi, S. Mohajerzadeh, B. Forouzandeh, IEEE J. Sel. Top. Quantum Electron. 16, 394 (2010)

    Article  Google Scholar 

  4. A.K. Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  5. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  6. X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R.D. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324(5932), 1312–1314 (2009)

    Article  ADS  Google Scholar 

  7. M.Y. Han, B. Ozyilmaz, Y.B. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  8. J. Li, R.J. Zhang, H.Q. Jiang, G.J. Cheng, Nanotechnology 22, 475303 (2011)

    Article  ADS  Google Scholar 

  9. S.W. Lee, M.F. Toney, W. Ko, J.C. Randel, H.J. Jung, K. Munakata, J. Lu, T.H. Geballe, M.R. Beasley, R. Sinclair, H.C. Manoharan, A. Salleo, ACS Nano 4(12), 7524 (2010)

    Article  Google Scholar 

  10. T. Chong, M.H. Hong, L.P. Shi, Laser Photonics Rev. 4(1), 123–143 (2010)

    Article  ADS  Google Scholar 

  11. M. Currie, J.D. Caldwell, F.J. Bezares, J. Robinson, T. Anderson, H. Chun, M. Tadjer, Appl. Phys. Lett. 99, 211909 (2011)

    Article  ADS  Google Scholar 

  12. A. Roberts, D. Cormode, C. Reynolds, T. Newhouse-Illige, B.J. LeRoy, A. Sandhu, Appl. Phys. Lett. 99, 051912 (2011)

    Article  ADS  Google Scholar 

  13. J.J. Liang, Y.S. Chen, Y.F. Xu, Z.B. Liu, L. Zhang, X. Zhao, X.L. Zhang, J.G. Tian, Y. Huang, Y.F. Ma, F.F. Li, ACS Appl. Mater. Interfaces 2(11), 3310–3317 (2010)

    Article  Google Scholar 

  14. Y.L. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.B. Sun, F.S. Xiao, Nano Today 5, 15–20 (2010)

    Article  Google Scholar 

  15. L. Guo, R.Q. Shao, Y.L. Zhang, H.B. Jiang, X.B. Li, S.Y. Xie, B.B. Xu, Q.D. Chen, J.F. Song, H.B. Sun, J. Phys. Chem. C 116, 3594 (2012)

    Article  Google Scholar 

  16. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  17. Y. Zhou, Q. Bao, B. Varghese, L.A.L. Tang, C.K. Tan, C. Sow, K.P. Loh, Adv. Mater. 22, 67 (2010)

    Article  Google Scholar 

  18. R.S. Singh, V. Nalla, W. Chen, A.T.S. Wee, W. Ji, ACS Nano 5(7), 5969–5975 (2011)

    Article  Google Scholar 

  19. Y. Shimotsuma, K. Hirao, P.G. Kazansky, J. Qiu, Jpn. J. Appl. Phys. 44(7A), 4735–4748 (2005)

    Article  ADS  Google Scholar 

  20. B. Krauss, T. Lohmann, D.H. Chae, M. Haluska, K. von Klitzing, J.H. Smet, Phys. Rev. B 79, 165428 (2009)

    Article  ADS  Google Scholar 

  21. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Nano Lett. 7, 1643 (2007)

    Article  ADS  Google Scholar 

  22. A.C. Ferrari, Solid State Commun. 143, 47–57 (2007)

    Article  ADS  Google Scholar 

  23. X. Wang, Y.P. Chen, D.D. Nolte, Opt. Express 16(26), 22105–22112 (2008)

    Article  Google Scholar 

  24. X. Chu, L.D. Schmidt, Carbon 29, 1251 (1991)

    Article  Google Scholar 

  25. S.I. Anisimov, B.S. Luk’yanchuk, Phys. Usp. 45, 293 (2002)

    Article  Google Scholar 

  26. B.S. Luk’yanchuk, S.I. Anisimov, Y.F. Lu, Proc. SPIE 4423, 141 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the partial support of this research by Royal Academy of Engineering for multi-national collaborations through Research Exchange with China and India Award – Major Award scheme 2011–2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Li, L., Wang, Z.B. et al. Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene. Appl. Phys. A 109, 291–297 (2012). https://doi.org/10.1007/s00339-012-7044-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7044-x

Keywords

Navigation