Skip to main content
Log in

Effects of annealing temperature on the structure, photoluminescence and ferromagnetism properties of Cr-implanted ZnO nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Room temperature ferromagnetism was observed in Cr-implanted ZnO nanowires annealed at 500, 600, and 700 °C. The implantation dose for Cr ions was 1×1016 cm−2, while the implantation energies were 100 keV. Except for ZnO (100), (002), and (200) orientations, no extra diffraction peaks from Cr-related secondary phase or impurities were observed. With the increasing of annealing temperatures, the intensity of the peaks increased while the FWHM values decreased. The Cr 2p1/2 and 2p3/2 peaks, with a binding energy difference of 10.6 eV, appear at 586.3 and 575.7 eV, can be attributed to Cr3+ in ZnO nanowires. For the Cr-implanted ZnO nanowires without annealing, the band energy emission disappears and the defect related emission with wavelength of 500–700 nm dominates, which can be attributed to defects introduced by implantation. Cr-implanted ZnO nanowires annealed at 500 °C show a saturation magnetization value of over 11.4×10−5 emu and a positive coercive field of 67 Oe. The origin of ferromagnetism behavior can be explained on the basis of electrons and defects that form bound magnetic polarons, which overlap to create a spin-split impurity band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, J. Appl. Phys. 93, 1 (2003)

    Article  ADS  Google Scholar 

  2. Y.X. Wang, H. Liu, Z.Q. Li, X.X. Zhang, R.K. Zheng, S.P. Ringer, Appl. Phys. Lett. 89, 042511 (2006)

    Article  ADS  Google Scholar 

  3. G.L. Liu, Q. Cao, J.X. Deng, P.F. Xing, Y.F. Tian, Y.X. Chen, S.S. Yan, L.M. Mei, Appl. Phys. Lett. 90, 052504 (2007)

    Article  ADS  Google Scholar 

  4. I. Malajovich, J.J. Berry, N. Samarth, D.D. Awschalom, Nature 411, 770 (2001)

    Article  ADS  Google Scholar 

  5. S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, T. Steiner, Semicond. Sci. Technol. 19, R59 (2004)

    Article  ADS  Google Scholar 

  6. T. Dietl, Semicond. Sci. Technol. 17, 377 (2002)

    Article  ADS  Google Scholar 

  7. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  8. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  ADS  Google Scholar 

  9. S.J. Han, Appl. Phys. Lett. 81, 4212 (2002)

    Article  ADS  Google Scholar 

  10. V. Selvaraj, N. Ohashi, J. Appl. Phys. 102, 014905 (2007)

    Article  ADS  Google Scholar 

  11. Y.M. Cho, W.K. Choo, Appl. Phys. Lett. 80, 3358 (2002)

    Article  ADS  Google Scholar 

  12. S. Ramachandran, A. Tiwari, J. Narayan, Appl. Phys. Lett. 84, 5255 (2004)

    Article  ADS  Google Scholar 

  13. A. Manivannan, J. Appl. Phys. 99, 08M110 (2006)

    Article  Google Scholar 

  14. J. Hays, A. Thurber, K.M. Reddy, A. Punnoose, J. Appl. Phys. 99, 08M123 (2006)

    Article  Google Scholar 

  15. D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, R.G. Wilson, Appl. Phys. Lett. 82, 239 (2003)

    Article  ADS  Google Scholar 

  16. D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, J.D. Budai, L.A. Boatner, M.F. Chisholm, J.S. Lee, Z.G. Khim, Y.D. Park, R.G. Wilson, Appl. Phys. Lett. 83, 5488 (2003)

    Article  ADS  Google Scholar 

  17. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  ADS  Google Scholar 

  18. Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Nature 430, 61 (2004)

    Article  ADS  Google Scholar 

  19. Y. Jun, Y. Jung, J. Cheon, J. Am. Chem. Soc. 124, 615 (2002)

    Article  Google Scholar 

  20. G. Perillat-Merceroz, P. Gergaud, P. Marotel, S. Brochen, P. Jouneau, G. Feuillet, J. Appl. Phys. 109, 023513 (2011)

    Article  ADS  Google Scholar 

  21. Y.Y. Song, K.S. Park, D.V. Son, S.C. Yu, H.J. Kang, J. Korean Phys. Soc. 50, 1706 (2007)

    Article  ADS  Google Scholar 

  22. M. Chen, X. Wang, Y.H. Yu, Appl. Surf. Sci. 158, 134 (2000)

    Article  ADS  Google Scholar 

  23. L.K. Rao, V. Vinni, Appl. Phys. Lett. 63, 608 (1993)

    Article  ADS  Google Scholar 

  24. S. Major, S. Kumar, M. Bhatnagar, K.L. Chopra, Appl. Phys. Lett. 49, 394 (1986)

    Article  ADS  Google Scholar 

  25. M.N. Islam, T.B. Ghosh, K.L. Chopraet, Thin Solid Films 280, 20 (1996)

    Article  ADS  Google Scholar 

  26. L.W. Yang, X.L. Wu, G.S. Huang, J. Appl. Phys. 97, 014308 (2005)

    Article  ADS  Google Scholar 

  27. C.K. Xu, K.K. Yang, Y.Y. Liu, L.W. Huang, H. Lee, J. Cho, H. Wang, J. Phys. Chem. C 112, 19236 (2008)

    Article  Google Scholar 

  28. C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang, Solid State Commun. 138, 511 (2006)

    Article  ADS  Google Scholar 

  29. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001)

    Article  ADS  Google Scholar 

  30. K. Vanheusdan, W.L. Warren, C.H. Seager, D.R. Tallent, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  31. D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Yao, J. Cryst. Growth 185, 605 (1998)

    Google Scholar 

  32. D. Li, Y.H. Leung, A.B. Djurisic, Z.T. Liu, M.H. Xei, S.L. Shi, S.J. Xu, W.K. Chan, Appl. Phys. Lett. 85, 1601 (2004)

    Article  ADS  Google Scholar 

  33. C. Li, G.J. Fang, F.H. Su, G.H. Li, X.G. Wu, X.Z. Zhao, Nanotechnology 17, 3740 (2006)

    Article  ADS  Google Scholar 

  34. T. Story, R.R. Galazka, R.B. Frankel, P.A. Wolff, Phys. Rev. Lett. 56, 777 (1986)

    Article  ADS  Google Scholar 

  35. C. Liu, F. Yun, H. Morkoc, J. Mater. Sci. 16, 555 (2005)

    Google Scholar 

  36. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under contracts 10435060 and 10675095 and by the Doctoral Program of Zhanjiang Normal University (ZL1007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, C.W., Shao, L.X. & Fu, D.J. Effects of annealing temperature on the structure, photoluminescence and ferromagnetism properties of Cr-implanted ZnO nanowires. Appl. Phys. A 109, 163–168 (2012). https://doi.org/10.1007/s00339-012-7027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7027-y

Keywords

Navigation