Advertisement

Applied Physics A

, Volume 109, Issue 1, pp 139–143 | Cite as

Rapid dendritic growth and solute trapping within undercooled ternary Ni-5%Cu-5%Mo alloy

  • J. Chang
  • H. P. Wang
  • K. Zhou
  • B. WeiEmail author
Article

Abstract

The dendritic growth velocity of α-Ni phase was measured as a function of undercooling in the nonequilibrium solidification process of an undercooled ternary Ni-5%Cu-5%Mo alloy. At the experimental maximum undercooling of 308 K (0.17T L), the dendritic growth velocity attains 32 m/s. With the increase of undercooling, a morphological transition from dendrites into equiaxed grains occurs. Furthermore, the high dendritic growth velocity leads to the significant solute trapping of Cu and Mo elements and almost segregationless solidification is realized at the maximum undercooling.

Keywords

Rapid Solidification Dendritic Growth Misorientation Angle Electron Back Scatter Diffraction Electron Back Scatter Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors are grateful to Drs. F.P. Dai, W.L. Wang, and Y. Ruan for their help in the experiments and analysis. This research was supported by National Science Foundation of China under Grants Nos. 50971103 and 50971105.

References

  1. 1.
    S.H. Zhou, R.E. Napolitano, Phys. Rev. B 78, 184111 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    W.-L. Chan, R.S. Averback, D.G. Cahill, Y. Ashkenazy, Phys. Rev. Lett. 102, 095701 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Yang, H. Humadi, D. Buta, B.B. Laird, D.Y. Sun, J.J. Hoyt, M. Asta, Phys. Rev. Lett. 107 (2011) Google Scholar
  4. 4.
    Y. Ruan, F. Dai, B. Wei, Appl. Phys. A 104, 275 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    P.R. Algoso, W.H. Hofmeister, R.J. Bayuzick, Acta Mater. 51, 4307 (2003) CrossRefGoogle Scholar
  6. 6.
    W.L. Wang, Y.J. Lü, H.Y. Qin, B.B. Wei, Sci. China Ser. G 39, 357 (2009) Google Scholar
  7. 7.
    D.E. Hoglund, M.O. Thompson, M.J. Aziz, Phys. Rev. B 58, 189 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    K.A. Jackson, K.M. Beatty, K.A. Gudgel, J. Cryst. Growth 271, 481 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    H.P. Wang, W.J. Yao, B. Wei, Appl. Phys. Lett. 89, 201905 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    A. Karma, Int. J. Non-Equilib. Process. 11, 201 (1998) Google Scholar
  11. 11.
    T.G. Woodcock, O. Shuleshova, B. Gehrmann, W. Löser, Metall. Mater. Trans. A 39, 2906 (2008) CrossRefGoogle Scholar
  12. 12.
    W. Loeser, T.G. Woodcock, O. Shuleshova, R. Hermann, H.G. Lindenkreuz, B. Gehrmann, S. Schneider, T. Volkmann, Inst. Phys. Conf. Ser. 327, 012005 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    J. Chang, H.P. Wang, B. Wei, Philos. Mag. Lett. 88, 821 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    J. Lipton, W. Kurz, R. Trivedi, Acta Metall. 35, 957 (1987) CrossRefGoogle Scholar
  15. 15.
    R. Trivedi, J. Lipton, W. Kurz, Acta Metall. 35, 965 (1987) CrossRefGoogle Scholar
  16. 16.
    E.A. Brandes, G.B. Brook, Smithells Metals Reference Book (Butterworth-Heinemann, Stoneham, 1998) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations