Skip to main content
Log in

Thickness-dependence of optical constants for Ta2O5 ultrathin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient–oxide–interlayer–substrate) was presented. Ta2O5 thin films with thickness range of 1–400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Chung, J. Deen, J.S. Lee, M. Meyyappan, Nanotechnology 21, 412001 (2010)

    Article  Google Scholar 

  2. A. Redaelli, A. Pirovano, Nanotechnology 22, 254021 (2011)

    Article  ADS  Google Scholar 

  3. W.M. Tolles, Nanotechnology 7, 59 (1996)

    Article  ADS  Google Scholar 

  4. Q.Y. Cai, Y.X. Zheng, P.H. Mao, R.J. Zhang, D.X. Zhang, M.H. Liu, L.Y. Chen, J. Phys. D, Appl. Phys. 43, 445302 (2010)

    Article  Google Scholar 

  5. C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Balland, Mater. Sci. Eng., R Rep. 22, 269 (1998)

    Article  Google Scholar 

  6. W.D. Gao, M.Q. Zhan, S.H. Fan, J.D. Shao, Z.X. Fan, Appl. Surf. Sci. 250, 195 (2005)

    Article  ADS  Google Scholar 

  7. P.C. Joshi, M.W. Cole, J. Appl. Phys. 86, 871 (1999)

    Article  ADS  Google Scholar 

  8. M. Houssa, M. Tuominen, M. Naili, V.V. Afanas’ev, A. Stesmans, S. Haukka, M.M. Heyns, J. Appl. Phys. 87, 8615 (2000)

    Article  ADS  Google Scholar 

  9. J.Y. Zhang, I.W. Boyd, Appl. Phys. Lett. 77, 3574 (2000)

    Article  ADS  Google Scholar 

  10. L.Q. Zhu, Q. Fang, G. He, M. Liu, L.D. Zhang, Nanotechnology 16, 2865 (2005)

    Article  ADS  Google Scholar 

  11. G. He, L.D. Zhang, M. Liu, J.P. Zhang, X.J. Wang, C.M. Zhen, J. Appl. Phys. 105, 014109 (2009)

    Article  ADS  Google Scholar 

  12. S. Seki, T. Unagami, O. Kogure, B. Tsujiyama, J. Vac. Sci. Technol., A, Vac. Surf. Films 5, 1771 (1987)

    Article  ADS  Google Scholar 

  13. G.B. Alers, D.J. Werder, Y. Chabal, H.C. Lu, E.P. Gusev, E. Garfunkel, T. Gustafsson, R.S. Urdahl, Appl. Phys. Lett. 73, 1517 (1998)

    Article  ADS  Google Scholar 

  14. M. Losurdo, Thin Solid Films 519, 2575 (2011)

    Article  ADS  Google Scholar 

  15. M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A.D. Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, O. Saxl, J. Nanopart. Res. 11, 1521 (2009)

    Article  Google Scholar 

  16. Q.Y. Cai, Y.X. Zheng, D.X. Zhang, W.J. Lu, R.J. Zhang, W. Lin, H.B. Zhao, L.Y. Chen, Opt. Express 19, 12969 (2011)

    Article  ADS  Google Scholar 

  17. L.Y. Chen, D.W. Lynch, Appl. Opt. 26, 5221 (1987)

    Article  ADS  Google Scholar 

  18. L.Y. Chen, X.W. Feng, Y. Su, H.Z. Ma, Y.H. Qian, Appl. Opt. 33, 1299 (1994)

    Article  ADS  Google Scholar 

  19. K. Vedam, Thin Solid Films 313, 1 (1998)

    Article  ADS  Google Scholar 

  20. S. Colard, M. Mihailovic, Mater. Sci. Eng. B 66, 88 (1999)

    Article  Google Scholar 

  21. E. Franke, C.L. Trimble, M.J. DeVries, J.A. Woollam, M. Schubert, F. Frost, J. Appl. Phys. 88, 5166 (2000)

    Article  ADS  Google Scholar 

  22. M.J. Bergmann, U. Ozgur, H.C. Casey, H.O. Everitt, J.F. Muth, Appl. Phys. Lett. 75, 67 (1999)

    Article  ADS  Google Scholar 

  23. G.E. Jellison, J. Appl. Phys. 69, 7627 (1991)

    Article  ADS  Google Scholar 

  24. F. Giustino, A. Bongiorno, A. Pasquarello, J. Phys. Condens. Matter 17, S2065 (2005)

    Article  ADS  Google Scholar 

  25. J.K. Tomfohr, O.F. Sankey, Phys. Status Solidi, B Basic Res. 233, 59 (2002)

    Article  ADS  Google Scholar 

  26. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007)

    Google Scholar 

  27. T.W.H. Oates, A. Mucklich, Nanotechnology 16, 2606 (2005)

    Article  ADS  Google Scholar 

  28. R.A.B. Devine, Appl. Phys. Lett. 68, 1924 (1996)

    Article  ADS  Google Scholar 

  29. L. Ding, T.P. Chen, Y. Liu, C.Y. Ng, S. Fung, Nanotechnology 16, 2657 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) project of China with the contract numbers 60778028, 60938004, 60908005, 11174058, by the No. 2 National Science and Technology Major Project of China under Contract No. 2011ZX02109-004, and by the STCSM project of China with the Grant No. 08DZ1204600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Xiang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, DX., Zheng, YX., Cai, QY. et al. Thickness-dependence of optical constants for Ta2O5 ultrathin films. Appl. Phys. A 108, 975–979 (2012). https://doi.org/10.1007/s00339-012-7007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7007-2

Keywords

Navigation