Skip to main content

Functionally graded PCL/β-TCP biocomposites in a multilayered structure for bone tissue regeneration

Abstract

Functionally graded (FG) composites consisting of polycaprolactone (PCL) and beta-tricalcium phosphate (β-TCP) particles were fabricated with a multilayered structure using a melt plotter with a two-heating-barrel system. Using this process, the concentration of β-TCP particles varied in each layered strut. Scanning electron microscopy (SEM) and energy dispersive spectroscopy mapping of calcium on the fabricated scaffolds indicated that the β-TCP particles were well distributed in each PCL strut, according to conceptual design. By incorporating β-TCP, the FG-PCL/β-TCP scaffolds had meaningful increases in water absorption (30 % increase) and showed good mechanical properties, although the mechanical properties are slightly low compared to pure PCL/β-TCP composite. We performed biological assessments to evaluate the capability of these FG scaffolds to act as a biomaterial for bone tissue regeneration with osteoblast-like cells (MG63). SEM images of cell-seeded FG scaffolds showed that the concentrated β-TCP struts were affected as good cell attachment/proliferation sites. Additionally, calcium deposition on the FG scaffolds was higher than that of normal scaffolds after 14 days. In particular, we observed high levels of mineralization in the highly concentrated β-TCP struts in the FG scaffolds. Based on these results, we believe that the FG scaffolds having various spatially designed structures with graded properties will be widely applicable for hard tissue engineering applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    D.J. Mooney, D.F. Baldwin, N.P. Suh, J.P. Vacanti, R. Langer, Biomaterials 17, 1417 (1996)

    Article  Google Scholar 

  2. 2.

    K.A. Gross, L.M. Rodrıguez Lorenzo, Biomaterials 25, 4955 (2004)

    Article  Google Scholar 

  3. 3.

    P.X. Ma, Mater. Today 7, 30 (2004)

    Article  Google Scholar 

  4. 4.

    A.G. Mikos, S.W. Herring, P. Ochareon, J. Elisseeff, H.H. Lu, R. Kandel, F.J. Schoen, M. Toner, D. Mooney, A. Atala, M.E.V. Dyke, D. Kaplan, G.V. Novakovic, Tissue Eng. 12, 3307 (2006)

    Article  Google Scholar 

  5. 5.

    M.P. Lutolf, J.A. Hubbell, Nat. Biotechnol. 23, 47 (2005)

    Article  Google Scholar 

  6. 6.

    W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Mater. Sci. Eng. A 362, 40 (2003)

    Article  Google Scholar 

  7. 7.

    S. Ozkan, D.M. Kalyon, X. Yu, J. Biomed. Mater. Res., Part A 92, 1007 (2010)

    Google Scholar 

  8. 8.

    N. Sudarmadji, J.Y. Tan, K.F. Leong, C.K. Chua, Y.T. Loh, Acta Biomater. 7, 530 (2011)

    Article  Google Scholar 

  9. 9.

    S.A. Catledge, W.C. Clem, N. Shrikishen, S. Chowdhry, A.V. Stanishevsky, M. Koopman, Y.K. Vohra, Biomed. Mater. 2, 142 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    S.H. Oh, I.K. Park, J.M. Kim, J.H. Lee, Biomaterials 28, 1664 (2007)

    Article  Google Scholar 

  11. 11.

    S.J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, Mater. Sci. Eng. C 23, 611 (2003)

    Article  Google Scholar 

  12. 12.

    X. Li, J. Xie, J. Lipner, X. Yuan, S. Thomopoulos, Y. Xia, Nano Lett. 9, 2763 (2009)

    ADS  Article  Google Scholar 

  13. 13.

    R. Mülhaupt, R. Landers, Y. Thomann, Eur. Cells Mater. 6(Suppl. 1), 12 (2003)

    Google Scholar 

  14. 14.

    R.Z. LeGeros, Chem. Rev. 108, 4742 (2008)

    Article  Google Scholar 

  15. 15.

    K.C. Ang, K.F. Leong, C.K. Chua, M. Chandrasekaran, J. Biomed. Mater. Res., Part A 80, 655 (2007)

    Article  Google Scholar 

  16. 16.

    L.A. Utracki, Polym. Eng. Sci. 23, 602 (1983)

    Article  Google Scholar 

  17. 17.

    M.G. Yeo, H.J. Lee, G.H. Kim, Biomacromolecules 12, 502 (2011)

    Article  Google Scholar 

  18. 18.

    K.B. Kim, A. Yeatts, D. Dean, J.P. Fisher, Tissue Eng. Part B 16, 523 (2010)

    Article  Google Scholar 

  19. 19.

    V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)

    Article  Google Scholar 

  20. 20.

    L.A. Cyster, D.M. Grant, S.M. Howdle, F.R.A.J. Rose, D.J. Irvine, D. Freeman, C.A. Scotchford, K.M. Shakesheff, Biomaterials 26, 697 (2005)

    Article  Google Scholar 

  21. 21.

    S.M. Roosa, J.M. Kemppainen, E.N. Moffitt, P.H. Krebsbach, S.J. Hollister, J. Biomed. Mater. Res. A 92, 359 (2009)

    Google Scholar 

  22. 22.

    H. Bittiger, R.H. Marchessault, W.D. Niegisch, Acta Crystallogr. 26, 1923 (1970)

    Article  Google Scholar 

  23. 23.

    K. Anselme, M. Bigerelle, Acta Biomater. 1, 211 (2005)

    Article  Google Scholar 

  24. 24.

    C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Science 276, 1425 (1997)

    Article  Google Scholar 

  25. 25.

    E.K.F. Yim, R.M. Reano, S.W. Pang, A.F. Yee, C.S. Chen, K.W. Leong, Biomaterials 26, 5405 (2005)

    Article  Google Scholar 

  26. 26.

    M.G. Yeo, G.H. Kim, Chem. Mater. 24, 903 (2012). doi:10.1021/cm201119q

    Article  Google Scholar 

  27. 27.

    K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27, 3413 (2006)

    Article  Google Scholar 

  28. 28.

    S.J. Hollister, Nat. Mater. 4, 518 (2005)

    ADS  Article  Google Scholar 

  29. 29.

    A. Yeo, W.J. Wong, S.H. Teoh, J. Biomed. Mater. Res., Part A 93, 1358 (2010)

    Google Scholar 

  30. 30.

    T.P. Kunzler, C. Huwiler, T. Drobek, J. Voros, N.D. Spencer, Biomaterials 28, 5000 (2007)

    Article  Google Scholar 

  31. 31.

    Y. Takagishi, T. Kawakami, Y. Hara, M. Shinkai, T. Takezawa, T. Nagamune, Tissue Eng. 12, 927 (2006)

    Article  Google Scholar 

  32. 32.

    S.D. McCullen, Y. Zhu, S.H. Bernacki, R.J. Narayan, B. Pourdeyhimi, R.E. Gorga, E.G. Loboa, Biomed. Mater. 4, 035002 (2009)

    ADS  Article  Google Scholar 

  33. 33.

    H. Liao, A.S. Andersson, D. Sutherland, S. Petronis, B. Kasemo, P. Thomsen, Biomaterials 24, 649 (2003)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to GeunHyung Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, Y.B., Kim, G. Functionally graded PCL/β-TCP biocomposites in a multilayered structure for bone tissue regeneration. Appl. Phys. A 108, 949–959 (2012). https://doi.org/10.1007/s00339-012-7004-5

Download citation

Keywords

  • Water Contact Angle
  • MG63 Cell
  • Functionally Grade
  • Middle Area
  • Bone Tissue Regeneration