Skip to main content
Log in

Dependence of the gas sensing properties of ZnO nanowires on their microstructure

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two different types of ZnO nanowires were synthesized by the thermal evaporation of different material powders: ZnS powders for ZnO nanowires A; and a mixture of ZnO and graphite powders for ZnO nanowires B. ZnO nanowires A were found to have a bamboo structure consisting of many hexagonal plates each of which is a single crystal, whereas ZnO nanowires B were single crystals with no grain boundary at all. ZnO nanowires B had a far higher degree of preferred orientation than ZnO nanowires A. The sensing properties of ZnO nanowires A were superior to those of ZnO nanowires B in terms of the sensing response and sensing speed. ZnO nanowires A showed an approximately 440 % response at 5 ppm NO2 at 300 °C, whereas ZnO nanowires B showed an approximately 150 % response under the same condition. ZnO nanowires A showed considerably shorter response and recovery times than ZnO nanowires B under the same condition. The superior sensing properties of ZnO nanowires A compared to ZnO nanowires B can be explained mainly by carrier modulation of the depletion layer formed across the grain boundaries of nanowires A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.J. Chen, C.L. Zhu, L.J. Wang, P. Gao, M.S. Cao, X.L. Shi, Nanotechnology 20, 045502 (2009)

    Article  ADS  Google Scholar 

  2. X.J. Huang, Y.K. Choi, Sens. Actuators B 122, 659 (2007)

    Article  Google Scholar 

  3. J.Y. Park, S.W. Choi, J.W. Lee, C. Lee, S.S. Kim, J. Am. Ceram. Soc. 92, 2551 (2009)

    Article  Google Scholar 

  4. T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi, Y. Takita, J. Mater. Chem. 8, 2037 (1998)

    Article  Google Scholar 

  5. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, N. Yamazoe, Sens. Actuators B 49, 121 (1998)

    Article  Google Scholar 

  6. A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Adv. Mater. 15, 997 (2003)

    Article  Google Scholar 

  7. Y.H. Lin, M.W. Huang, C.K. Liu, J.R. Chen, J.M. Wu, H.C. Shih, Electrochem. Soc. 156, K196 (2009)

    Article  Google Scholar 

  8. N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, Sens. Actuators B 107, 708 (2005)

    Article  Google Scholar 

  9. Q. Wan, T.H. Wang, Chem. Commun. (Camb.) 3841 (2005)

  10. A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5, 667 (2005)

    Article  ADS  Google Scholar 

  11. C. Jin, S. Park, H. Kim, C. Lee, Sens. Actuators B 161, 223 (2011)

    Article  Google Scholar 

  12. J.Y. Park, S.W. Choi, S.S. Kim, Nanotechnology 21, 475601 (2010)

    Article  ADS  Google Scholar 

  13. E. Oh, H.Y. Choi, S.H. Jung, S. Cho, J.C. Kim, K.H. Lee, S.W. Kang, J. Kim, J.Y. Yun, S.H. Jeong, Sens. Actuators B 141, 239 (2009)

    Article  Google Scholar 

  14. J. Kaur, R. Kumar, M.C. Bhatnagar, Sens. Actuators B 126, 478 (2007)

    Article  Google Scholar 

  15. A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri, Cryst. Growth Des. 7, 2500 (2007)

    Article  Google Scholar 

  16. Z. Liu, M. Miyauchi, T. Yamazaki, Y. Shen, Sens. Actuators B 140, 514 (2009)

    Article  Google Scholar 

  17. C.S. Rout, K. Ganesh, A. Govindaraj, C.N.R. Rao, Appl. Phys. A 85, 241 (2006)

    Article  ADS  Google Scholar 

  18. C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou, Appl. Phys. Lett. 82, 1613 (2003)

    Article  ADS  Google Scholar 

  19. D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Nano Lett. 4, 1919 (2004)

    Article  ADS  Google Scholar 

  20. S.W. Choi, J.Y. Park, S.S. Kim, Nanotechnology 20, 465603 (2009)

    Article  ADS  Google Scholar 

  21. O.V. Safonova, G. Delabouglise, B. Chenevier, A.M. Gaskov, M. Labeau, Mater. Sci. Eng., C, Biomim. Mater., Sens. Syst. 21, 105 (2002)

    Article  Google Scholar 

  22. B.L. Zhu, C.S. Xie, W.Y. Wang, K.J. Huang, J.H. Hu, Mater. Lett. 58, 624 (2004)

    Article  Google Scholar 

  23. U. Hoefer, J. Frank, M. Fleischer, Sens. Actuators B 78, 6 (2001)

    Article  Google Scholar 

  24. C.C. Lin, S.Y. Chen, S.Y. Cheng, H.Y. Lee, Appl. Phys. Lett. 84, 5040 (2004)

    Article  ADS  Google Scholar 

  25. Z. Gergintschew, H. Förster, J. Kositza, D. Schipanski, Sens. Actuators B 170, 26 (1995)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Korea Research Foundation through ‘the 2010 Core Research Program’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., An, S., Jin, C. et al. Dependence of the gas sensing properties of ZnO nanowires on their microstructure. Appl. Phys. A 108, 35–40 (2012). https://doi.org/10.1007/s00339-012-6998-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6998-z

Keywords

Navigation