Skip to main content
Log in

Application of time-resolved digital holographic microscopy in studies of early femtosecond laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied evolution of femtosecond laser ablation by employing novel method of time-resolved off-axis digital holographic microscopy. Phase and amplitude profiles of early shock front and ablation plume dynamics of irradiated tempered steel were reconstructed from the digital holograms. In order to gain additional information, digital holographic microscopy was combined with plasma emission imaging. By using both techniques simultaneously we studied material response to multi-pulse irradiation, shock wave propagation, ablation plume formation and plasma emission. The significant changes in ablation performance were observed when using multi-pulse irradiation if compared to widely investigated single-shot regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Phipps, Laser Ablation and Its Applications, 1st edn. (Springer, Berlin, 2006)

    Google Scholar 

  2. D. Bauerle, Laser Processing and Chemistry, vol. 3rd rev. edn. (Springer, Berlin, 2011)

    Book  Google Scholar 

  3. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, New York, 2003)

    Google Scholar 

  4. W.B. Lee, J. Wu, Y.I. Lee, J. Sneddon, Appl. Spectrosc. Rev. 39(1), 27 (2004)

    Article  ADS  Google Scholar 

  5. A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, Appl. Phys. A, Mater. Sci. Process. 104, 77 (2011)

    Article  ADS  Google Scholar 

  6. M. Borghesi, J. Fuchs, S. Bulanov, A. Mackinnon, P. Patel, M. Roth, Fusion Sci. Technol. 49, 412 (2006)

    Google Scholar 

  7. R.C. Elton, X-ray Lasers (Academic Press, San Diego, 1990)

    Google Scholar 

  8. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tannermann, Appl. Phys. A, Mater. Sci. Process. 63, 109 (1996)

    Article  ADS  Google Scholar 

  9. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, J. Phys. B, At. Mol. Opt. Phys. 32(14), 131 (1999)

    Article  ADS  Google Scholar 

  10. A.N. Zaidel, Sov. Phys. Usp. 29(5), 447 (1986)

    Article  ADS  Google Scholar 

  11. R.A. Lindley, R.M. Gilgenbach, C.H. Ching, J.S. Lash, G.L. Doll, J. Appl. Phys. 76(9), 5457 (1994)

    Article  ADS  Google Scholar 

  12. M. Borghesi, A. Giulietti, D. Giulietti, L.A. Gizzi, A. Macchi, O. Willi, Phys. Rev. E 54, 6769 (1996)

    Article  ADS  Google Scholar 

  13. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter Vehn, S.I. Anisimov, Phys. Rev. Lett. 81, 224 (1998)

    Article  ADS  Google Scholar 

  14. V. Temnov, K. Sokolowski-Tinten, P. Zhou, D. von der Linde, Appl. Phys. A, Mater. Sci. Process. 78, 483 (2004)

    Article  ADS  Google Scholar 

  15. R. Srinivasan, J. Appl. Phys. 73(6), 2743 (1993)

    Article  ADS  Google Scholar 

  16. M. Hauer, D. Funk, T. Lippert, A. Wokaun, Thin Solid Films 453–454, 584 (2004)

    Article  Google Scholar 

  17. P.E. Dyer, A. Issa, P.H. Key, Appl. Phys. Lett. 57(2), 186 (1990)

    Article  ADS  Google Scholar 

  18. J.P. Geindre, P. Audebert, A. Rousse, F. Falliès, J.C. Gauthier, A. Mysyrowicz, A.D. Santos, G. Hamoniaux, A. Antonetti, Opt. Lett. 19(23), 1997 (1994)

    Article  ADS  Google Scholar 

  19. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, I.V. Hertel, Rev. Sci. Instrum. 82(3), 033703 (2011)

    Article  ADS  Google Scholar 

  20. A. Horn, I. Mingareev, A. Werth, M. Kachel, U. Brenk, Appl. Phys. A, Mater. Sci. Process. 93, 165 (2008)

    Article  ADS  Google Scholar 

  21. Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, D. Psaltis, Opt. Lett. 27(1), 22 (2002)

    Article  ADS  Google Scholar 

  22. M. Centurion, Y. Pu, Z. Liu, D. Psaltis, T.W. Hänsch, Opt. Lett. 29(7), 772 (2004)

    Article  ADS  Google Scholar 

  23. T. Balciunas, A. Melninkaitis, G. Tamosauskas, V. Sirutkaitis, Opt. Lett. 33(1), 58 (2008)

    Article  ADS  Google Scholar 

  24. T. Balciunas, A. Melninkaitis, A. Vanagas, V. Sirutkaitis, Opt. Lett. 34(18), 2715 (2009)

    Article  ADS  Google Scholar 

  25. L. Zhu, C. Zhou, T. Wu, W. Jia, Z. Fan, Y. Ma, G. Niu, Appl. Opt. 49(13), 2510 (2010)

    Article  Google Scholar 

  26. D.B. Geohegan, Appl. Phys. Lett. 60(22), 2732 (1992)

    Article  ADS  Google Scholar 

  27. D.B. Geohegan, Appl. Phys. Lett. 62(13), 1463 (1993)

    Article  ADS  Google Scholar 

  28. H.J. Siebeneck, D.W. Koopman, J.A. Cobble, Rev. Sci. Instrum. 48(8), 997 (1977)

    Article  ADS  Google Scholar 

  29. G. Jellison, C.R. Parsons, Phys. Fluids 24(10), 1787 (1981)

    Article  ADS  Google Scholar 

  30. A.N. Mostovych, B.H. Ripin, J.A. Stamper, Rev. Sci. Instrum. 59(8), 1497 (1988)

    Article  ADS  Google Scholar 

  31. J. Lee, M.F. Becker, J.W. Keto, Opt. Laser Technol. 39(4), 835 (2007)

    Article  ADS  Google Scholar 

  32. R.E. Walkup, J.M. Jasinski, R.W. Dreyfus, Appl. Phys. Lett. 48(24), 1690 (1986)

    Article  ADS  Google Scholar 

  33. C. Pasquini, J. Cortez, L.M.C. Silva, F.B. Gonzaga, J. Braz. Chem. Soc. 18(3) (2007). 10.1590/S0103-50532007000300002

  34. D. Gabor, Nature 161, 777 (1948)

    Article  ADS  Google Scholar 

  35. J.W. Goodman, R.W. Lawrence, Appl. Phys. Lett. 11(3), 77 (1967)

    Article  ADS  Google Scholar 

  36. T. Huang, Proc. IEEE 59(9), 1335 (1971)

    Article  Google Scholar 

  37. E. Cuche, P. Marquet, C. Depeursinge, Appl. Opt. 38(34), 6994 (1999)

    Article  ADS  Google Scholar 

  38. U. Schnars, W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, Dordrecht, 2005)

    Google Scholar 

  39. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, T. Ito, Opt. Express 16(16), 11776 (2008)

    Article  ADS  Google Scholar 

  40. P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91, 225502 (2003)

    Article  ADS  Google Scholar 

  41. W.G. Roeterdink, L.B.F. Juurlink, O.P.H. Vaughan, J.D. Diez, M. Bonn, A.W. Kleyn, Appl. Phys. Lett. 82(23), 4190 (2003)

    Article  ADS  Google Scholar 

  42. P. Reinicke, J.M. ter Vehn, Phys. Fluids A 3(7), 1807 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A, Mater. Sci. Process. 69, S87 (1999)

    ADS  Google Scholar 

  44. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, Elmsford, 1980)

    Google Scholar 

  45. D.P. Kelly, B.M. Hennelly, N. Pandey, T.J. Naughton, W.T. Rhodes, Opt. Eng. 48(9), 095801 (2009)

    Article  ADS  Google Scholar 

  46. P.V. Yuldashev, M.V. Averiyanov, V.A. Khokhlova, O.A. Sapozhnikov, S. Ollivier, P. Blanc Benon, in 10ème Congrès Français d’Acoustique, SFA, ed. by S.F. d’Acoustique, Lyon, France (2010)

    Google Scholar 

  47. J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B.H. Ripin, Phys. Rev. Lett. 66, 2738 (1991)

    Article  ADS  Google Scholar 

  48. C. Porneala, D.A. Willis, J. Phys. D, Appl. Phys. 42(15), 155503 (2009)

    Article  ADS  Google Scholar 

  49. S. Martin, A. Hertwig, M. Lenzner, J. Kruger, W. Kautek, Appl. Phys. A, Mater. Sci. Process. 77, 883 (2003)

    Article  ADS  Google Scholar 

  50. K. Kurselis, T. ‘Kudrius, D. Paipulas, O. Balachninaite, V. Sirutkaitis, Lith. J. Phys. 50(1), 95 (2010)

    Article  Google Scholar 

  51. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, X. Wang, Phys. Rev. B 71, 033406 (2005)

    Article  ADS  Google Scholar 

  52. J. Koch, S. Heiroth, T. Lippert, D. Günther, Spectrochim. Acta, Part B, At. Spectrosc. 65(11), 943 (2010)

    Article  ADS  Google Scholar 

  53. M.S. Ahsan, F. Ahmed, Y.G. Kim, M.S. Lee, M.B. Jun, Appl. Surf. Sci. 257(17), 7771 (2011)

    Article  ADS  Google Scholar 

  54. A.E. Chmel, A.M. Kondyrev, Russ. Met. 3, 105 (1992)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Research Council of Lithuania, Grant No. MIP-105/2011 and partially by EC 7FP Project MesMesh (Contract No. NMP3-SE-2009-229099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrius Melninkaitis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urniežius, A., Šiaulys, N., Kudriašov, V. et al. Application of time-resolved digital holographic microscopy in studies of early femtosecond laser ablation. Appl. Phys. A 108, 343–349 (2012). https://doi.org/10.1007/s00339-012-6997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6997-0

Keywords

Navigation