Skip to main content
Log in

Controllable switching ratio in quantum dot/metal–metal oxide nanostructure based non-volatile memory device

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report a facile quantum dot/In–InOx(nanostructure)/quantum dot/In based non-volatile resistive memory device. The solution processed tri-layer structure exhibited bipolar resistive switching with a ratio of 100 between the high-resistance state and low-resistance state. The memory device was stable and functional even after 100,000 cycles of operation and it exhibited good retention characteristics. The ON/OFF switching ratio could be controlled by choosing appropriate metal in the structure. Memory operating mechanism is discussed based on charge trapping in quantum dots with InOx acting as barrier. A comparative study of memory devices consisting of aluminum and titanium in place of indium is presented. The possible reason for the variation in ON/OFF ratio is discussed on the size of the nano-sized grains of the middle metal layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.D. Meindl, Q. Chen, J.A. Davis, Science 293, 2044 (2001)

    Article  ADS  Google Scholar 

  2. R. Waser, M. Aon, Nat. Mater. 6, 833 (2007)

    Article  ADS  Google Scholar 

  3. G.I. Meijer, Science 319, 1625 (2008)

    Article  Google Scholar 

  4. Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Nano Lett. 9, 1636 (2009)

    Article  ADS  Google Scholar 

  5. S.H. Jo, W. Lu, Nano Lett. 8, 392 (2008)

    Article  ADS  Google Scholar 

  6. H. Silva, H.L. Gomes, Yu.G. Pogorelov, P. Stallinga, D.M. de Leeuw, J.P. Araujo, J.B. Sousa, S.C.J. Meskers, G. Kakazei, S. Cardoso, P.P. Freitas, Appl. Phys. Lett. 94, 202107 (2009)

    Article  ADS  Google Scholar 

  7. M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, Appl. Phys. Lett. 92, 092108 (2008)

    Article  ADS  Google Scholar 

  8. M.D. Fischbein, M. Drndic, Appl. Phys. Lett. 86, 193106 (2005)

    Article  ADS  Google Scholar 

  9. E.S. Kannan, G.-H. Kim, D.A. Ritchie, Appl. Phys. Lett. 95, 143506 (2009)

    Article  ADS  Google Scholar 

  10. A. Marent, M. Geller, A. Schliwa, D. Reise, K. Potschke, D. Bimberg, N. Akcay, N. Oncan, Appl. Phys. Lett. 91, 242109 (2007)

    Article  ADS  Google Scholar 

  11. V. Kannan, Y.S. Chae, C.H.V.V. Ramana, D.-S. Ko, J.K. Rhee, J. Appl. Phys. 109, 086103 (2011)

    Article  ADS  Google Scholar 

  12. V. Kannan, J.K. Rhee, Appl. Phys. Lett. 99, 143504 (2011)

    Article  ADS  Google Scholar 

  13. V. Kannan, J.K. Rhee, J. Appl. Phys. 110, 074505 (2011)

    Article  ADS  Google Scholar 

  14. V. Kannan, K.R. Rajesh, M.R. Kim, Y.S. Chae, J.K. Rhee, Appl. Phys. A, Mater. Sci. Process. 102, 611 (2011)

    Article  ADS  Google Scholar 

  15. L. Jdira, P. Liljeroth, E. Stoffels, D. Vanmaekelbergh, S. Speller, Phys. Rev. B 73, 115305 (2006)

    Article  ADS  Google Scholar 

  16. A. Walsh, C. Richard, A. Catlow, A.A. Sokol, S.M. Woodley, Chem. Mater. 21, 4962 (2009)

    Article  Google Scholar 

  17. D. Yu, C. Wang, P. Guyot-Sionnest, Science 300, 1277 (2003)

    Article  ADS  Google Scholar 

  18. C. Wang, M. Shim, P. Guyot-Sionnest, Appl. Phys. Lett. 80, 4 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Millimeter-wave INnovation Technology Research Center (MINT), Dongguk University, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Rhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannan, V., Rhee, J.K. Controllable switching ratio in quantum dot/metal–metal oxide nanostructure based non-volatile memory device. Appl. Phys. A 108, 59–63 (2012). https://doi.org/10.1007/s00339-012-6983-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6983-6

Keywords

Navigation