Skip to main content

Advertisement

Log in

Femtosecond laser drilling of crystalline and multicrystalline silicon for advanced solar cell fabrication

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The rear contact solar cell concept has been implemented to increase the solar cell efficiency. Practically, it necessitates rapid fabrication of a large number of via holes to form low-loss current paths. It is not a trivial task to drill a number of microscopic holes through a typical Si wafer of ∼200 μm thickness at reasonable processing throughput and yield. In this research, a femtosecond laser is employed to drill via holes in both crystalline silicon (c-Si) and multicrystalline silicon (mc-Si) thin wafers of ∼170 μm thickness with various laser parameters such as number of laser shots and pulse energy. Since a significantly high pulse energy compared to ablation threshold is mainly applied, aiming to achieve a rapid drilling process, the femtosecond laser beam is subjected to complex non-linear characteristics. Therefore, the relative placement of the sample with respect to the laser focal position is also rigorously examined. While the non-linear effect at high pulse energy regime is complex, it also facilitates the drilling process in terms of achieving high-aspect ratio, for example, by extending the effective depth of focus by non-linear effect. Cross-sectional morphological analysis in conjunction with on-line emission and shadowgraph imaging are carried out in order to elucidate the drilling mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. van Kerschaver, R. Einhaus, J. Szlufcik, J. Nijs, R. Mertens, in Proc. 2nd World Conf. on Photovoltaic Energy Conversion, Vienna (1998), p. 1479

    Google Scholar 

  2. E. Van Kerschaver, G. Beaucarne, Prog. Photovolt.: Res. Appl. 14, 107 (2006)

    Article  Google Scholar 

  3. R.M. Swanson, in Proc. IEEE Photovoltaic Specialists Conf. (2005), p. 889

    Google Scholar 

  4. O. Schultz, S.W. Glunz, G.P. Willeke, Prog. Photovolt: Res. Appl. 12, 553 (2004)

    Article  Google Scholar 

  5. M.A. Green, M.J. Keevers, Prog. Photovolt.: Res. Appl. 3, 189 (1995)

    Article  Google Scholar 

  6. M.E. Law, E. Solley, M. Liang, D.B. Burk, IEEE Electron Device Lett. 12, 401 (1991)

    Article  ADS  Google Scholar 

  7. M. Takihara, T. Takahashi, T. Ujihara, Appl. Phys. Lett. 95, 191908 (2009)

    Article  ADS  Google Scholar 

  8. D.M. Karnakis, J. Fieret, P.T. Rumsby, M.C. Gower, Proc. SPIE 4443, 150 (2001)

    Article  ADS  Google Scholar 

  9. B. Tan, K. Venkatakrishnan, J. Micromech. Microeng. 17, 1511 (2007)

    Article  ADS  Google Scholar 

  10. L.M. Wee, E.Y.K. Ng, A.H. Prathama, H. Zheng, Opt. Laser Technol. 43, 62 (2011)

    Article  ADS  Google Scholar 

  11. A. Ancona, S. Döring, C. Jauregui, F. Röster, J. Limpert, S. Nolte, A. Tünnermann, Opt. Lett. 34, 3304 (2009)

    Article  ADS  Google Scholar 

  12. B. Tan, S. Panchatsharam, K. Venkatakrishnan, J. Phys. D, Appl. Phys. 42, 065102 (2009)

    Article  ADS  Google Scholar 

  13. S. Bruneau, J. Hermann, G. Dumltru, M. Sentis, E. Axente, Appl. Surf. Sci. 248, 299 (2005)

    Article  ADS  Google Scholar 

  14. X.C. Wang, H.Y. Zheng, P.L. Chu, J.L. Tan, K.M. Teh, T. Liu, B.C.Y. Ang, G.H. Tay, Appl. Phys. A, Mater. Sci. Process. 101, 271 (2010)

    Article  ADS  Google Scholar 

  15. S. Döring, S. Richter, S. Nolte, A. Tunnermann, Opt. Express 18, 20395 (2010)

    Article  Google Scholar 

  16. P. Laakso, R. Penttila, P. Heimala, J. Laser Micro Nanoeng. 5, 273 (2010)

    Article  Google Scholar 

  17. T. Matsumura, T. Nakatani, T. Yagi, Appl. Phys. A, Mater. Sci. Process. 86, 107 (2007)

    ADS  Google Scholar 

  18. S. Döring, S. Richter, A. Tunnermann, S. Nolte, Appl. Phys. A, Mater. Sci. Process. 105, 69 (2011)

    Article  ADS  Google Scholar 

  19. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  20. R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2003)

    Google Scholar 

  21. A. Couairon, L. Berge, S. Tzortzakis, M. Franco, A. Chiron, B. Lamouroux, Y.-B. Andre, B. Prade, A. Mysyrowicz, Nonlinear Opt.: Mater. Fund. Appl. Tech. Dig. 46, 292 (2000)

    Google Scholar 

  22. K. Sokolowski-Tinten, D. Linde, Phys. Rev. B 61, 2643 (2000)

    Article  ADS  Google Scholar 

  23. D.J. Hwang, C.P. Grigoropoulos, T.Y. Choi, J. Appl. Phys. 99, 083101 (2006)

    Article  ADS  Google Scholar 

  24. Z.Y. Chen, S.S. Mao, Appl. Phys. Lett. 93, 051506 (2008)

    Article  ADS  Google Scholar 

  25. S.S. Mao, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 76, 31 (2000)

    Article  ADS  Google Scholar 

  26. C. Momma, S. Nolte, B.N. Chichkov, F. v. Alvensleben, A. Tunnermann, Appl. Surf. Sci. 110, 15 (1997)

    Article  Google Scholar 

  27. P.A. Basore, Prog. Photovolt.: Res. Appl. 2, 177 (1994)

    Article  Google Scholar 

  28. R.F.W. Herrmann, J. Gerlach, E.E.B. Campbell, Appl. Phys. A, Mater. Sci. Process. 66, 35 (1998)

    Article  ADS  Google Scholar 

  29. J. Zhang, Z. Hao, T. Xi, X. Lu, Z. Zhang, H. Yang, Z. Jin, Z. Wang, Z. Wei, Self-organized propagation of femtosecond laser filamentation in air, in Self-Focusing: Past and Present, ed. by R.W. Boyd (Springer, Berlin, 2009)

    Google Scholar 

  30. K. Venkatakrishnan, B. Tan, P. Stanley, N.R. Slvakumar, J. Appl. Phys. 92, 1604 (2002)

    Article  ADS  Google Scholar 

  31. Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, vol. 1 (Academic Press, New York, 1966)

    Google Scholar 

  32. D.B. Geohegan, Appl. Phys. Lett. 60, 2732 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This research was partially supported by from AppliFlex LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas P. Grigoropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, S., Hwang, D.J., Park, H.K. et al. Femtosecond laser drilling of crystalline and multicrystalline silicon for advanced solar cell fabrication. Appl. Phys. A 108, 113–120 (2012). https://doi.org/10.1007/s00339-012-6932-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6932-4

Keywords

Navigation