Skip to main content

Fabrication of three-focal diffractive lenses by two-photon polymerization technique


Fabrication of submicron-height relief of three-focal diffractive lenses using two-photon polymerization is studied. Optical properties of the designed lenses are investigated theoretically and experimentally. The proposed design of the combined diffractive–refractive lenses is promising for the realization of three-focal optical ophthalmological implants with predetermined light intensity distribution between the foci. The realized three-focal optical element has a diameter size of 2.7 mm with the focal distances in the range of 27–34 mm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. B.C. Kress, P. Meyrueis, Applied Digital Optics: From Micro-optics to Nanophotonics (Wiley, New York, 2009)

    Google Scholar 

  2. D.C. O’Shea, T.J. Suleski, A.D. Kathman, D.W. Pratner, Diffractive Optics: Design, Fabrication, and Test (SPIE, Bellingham, 2004)

    Google Scholar 

  3. L.L. Doskolovich, D.L. Golovashkin, N.L. Kazanskiy, S.N. Khonina, V.V. Kotlyar, V.S. Pavelyev, R.V. Skidanov, V.A. Soifer, V.S. Solovyev, G.V. Uspleniev, A.V. Volkov, in Methods for Computer Design of Diffractive Optical Elements, ed. by V.A. Soifer (Wiley, New York, 2002)

    Google Scholar 

  4. A.L. Cohen, Appl. Opt. 31(19), 3750 (1992)

    ADS  Article  Google Scholar 

  5. M.J. Simpson, Appl. Opt. 31(19), 3621 (1992)

    ADS  Article  Google Scholar 

  6. S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412(6848), 4675 (1997)

    Google Scholar 

  7. B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Nature 398, 51 (1999)

    ADS  Article  Google Scholar 

  8. J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall, Opt. Lett. 28(5), 301 (2003)

    ADS  Article  Google Scholar 

  9. J. Serbin, A. Ovsianikov, B. Chichkov, Opt. Express 12(21), 5221 (2004)

    ADS  Article  Google Scholar 

  10. J. Fischer, G. von Freymann, M. Wegener, Adv. Mater. 22, 3578 (2010)

    Article  Google Scholar 

  11. B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, M. Gu, Appl. Phys. Lett. 90, 073503 (2007)

    ADS  Article  Google Scholar 

  12. V. Osipov, V. Pavelyev, D. Kachalov, A. Žukauskas, B. Chichkov, Opt. Express 18(25), 25808 (2010)

    ADS  Article  Google Scholar 

  13. M.A. Golub, L.L. Doskolovich, N.L. Kazanskiy, S.I. Kharitonov, V.A. Soifer, J. Mod. Opt. 39(6), 1245 (1992)

    ADS  Article  Google Scholar 

  14. V. Soifer, V. Kotlyar, L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, London, 1997)

    Google Scholar 

  15. F.W.J. Olver, Bessel functions of integer order, in Handbook of Mathematical Functions, with Formulas, Graphs and Tables, ed. by M. Abramowitz, I. Stegun (National Bureau of Standards, Washington, D.C., 1964), pp. 355–434

    Google Scholar 

  16. K. Obata, J. Koch, U. Hinze, B.N. Chichkov, Opt. Express 18(16), 17193 (2010)

    ADS  Article  Google Scholar 

Download references


We would like to gratefully acknowledge the EC FP7-Marie Curie-IIF Program (Proposal No. 235969), the Russian Federation state contract no. 07.514.11.4060, and the German project REMEDIS for support of this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Vladimir Osipov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Osipov, V., Doskolovich, L.L., Bezus, E.A. et al. Fabrication of three-focal diffractive lenses by two-photon polymerization technique. Appl. Phys. A 107, 525–529 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Phase Function
  • Diffraction Efficiency
  • Zone Plate
  • Paraxial Approximation
  • Diffractive Optical Element