Skip to main content

Gallium-based thermal interface material with high compliance and wettability


This study reports a gallium-based thermal interface material (GBTIM) consisting of gallium oxides dispersed uniformly into the 99 % gallium metal. The wettability of GBTIM with other materials is disclosed and compared. The thermal conductivity of GBTIM measured by a computer-controlled Mathis TCi thermal analyzer is ∼13.07 W m−1 K−1 at room temperature, which is significantly higher than that of conventional thermal greases. An experimental facility is described to measure the thermal resistance across the GBTIM under steady-state conditions and the thermal interface resistance is measured as low as 2.6 mm2 kW−1 with a pressure of 0.05 MPa, which is an order lower than that of the best commercialized thermal greases. Further, the GBTIM is formed into a desired shape to enhance thermal transfer, such as semi-liquid paste or thermal pad, which can be cut into a required shape.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. J. Donald, M. Martonosi, in Proceedings of the 33rd International Symposium on Computer Architecture (ISCA), vol. 78 (2006)

    Google Scholar 

  2. T. Treurniet, V. Lammens, in 22nd IEEE SEMI-THERM Symposium, vol. 173 (2006)

    Google Scholar 

  3. I. Mudawar, IEEE Trans. Compon. Packag. Technol. 24, 122 (2001)

    Article  Google Scholar 

  4. S. Whalen, M. Thompson, D. Bahr, C. Richards, R. Richards, Sens. Actuators A 104, 290 (2003)

    Article  Google Scholar 

  5. U. Ghoshal, S. Ghoshal, C. McDowell, L. Shi, S. Cordes, M. Farinelli, Appl. Phys. Lett. 80, 3006 (2002)

    Article  ADS  Google Scholar 

  6. G. Cha, Y. Sungtaek Ju, in ASME Int. Mech. Eng. Congress. Expos. Proc., vol. 12, p. 927 (2010)

    Google Scholar 

  7. J. Xu, T.S. Fisher, Int. J. Heat Mass Transf. 49, 1658 (2006)

    Article  Google Scholar 

  8. H.F. Chuang, S.M. Cooper, M. Meyyappan, B.A. Cruden, J. Nanosci. Nanotechnol. 4, 964 (2004)

    Article  Google Scholar 

  9. D. Chung, J. Mater. Eng. Perform. 10, 56 (2001)

    Article  Google Scholar 

  10. A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007)

    Article  Google Scholar 

  11. Y. Wu, C.H. Liu, H. Huang, S.S. Fan, Appl. Phys. Lett. 87, 3108 (2005)

    ADS  Google Scholar 

  12. B.A. Cola, X. Xu, T.S. Fisher, Appl. Phys. Lett. 90, 3513 (2007)

    Article  Google Scholar 

  13. B.A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher, H. Hu, J. Appl. Phys. 101, 4313 (2007)

    Article  ADS  Google Scholar 

  14. A. Hamdan, A. McLanahan, R. Richards, C. Richards, Exp. Therm. Fluid Sci. 35, 1250 (2011)

    Article  Google Scholar 

  15. J. Liu, Y.X. Zhou, China Patent No. 02131419.5 (2002)

  16. K.Q. Ma, J. Liu, Phys. Lett. A 361, 252 (2007)

    Article  ADS  Google Scholar 

  17. Y.G. Deng, J. Liu, Heat Mass Transf. 46, 1327 (2010)

    Article  ADS  Google Scholar 

  18. P.P. Li, J. Liu, Appl. Phys. Lett. 99, 094106 (2011)

    Article  ADS  Google Scholar 

  19. P.P. Li, J. Liu, J. Electron. Packag. 133, 041009 (2011)

    Article  Google Scholar 

  20. R.B. Booth, G.W. Grube, P.A. Gruber, I.Y. Khandros, R. Zingher, US Patent, No 5.198.189 (1992)

  21. L.T. Taylor, J. Rancourt, US Patent, NO 5.792.236 (1998)

  22. S.C. Hardy, J. Cryst. Growth 7, 602 (1985)

    Article  ADS  Google Scholar 

  23. T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1993)

    Google Scholar 

  24. J.P. Gwinn, R.L. Webb, Microelectron. J. 34, 215 (2003)

    Article  Google Scholar 

  25. M. Grujicic, C.L. Zhao, E.C. Dusel, Appl. Surf. Sci. 246, 290 (2005)

    Article  ADS  Google Scholar 


Download references


The authors acknowledge the valuable discussions with Prof. Yixin Zhou, Mr. Peipei Li, Ms. Haiyan Li and Mr. Yueguang Deng of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gao, Y., Liu, J. Gallium-based thermal interface material with high compliance and wettability. Appl. Phys. A 107, 701–708 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Gallium
  • Wettability
  • High Thermal Conductivity
  • Thermal Contact Resistance
  • Copper Block