Abstract
This study reports a gallium-based thermal interface material (GBTIM) consisting of gallium oxides dispersed uniformly into the 99 % gallium metal. The wettability of GBTIM with other materials is disclosed and compared. The thermal conductivity of GBTIM measured by a computer-controlled Mathis TCi thermal analyzer is ∼13.07 W m−1 K−1 at room temperature, which is significantly higher than that of conventional thermal greases. An experimental facility is described to measure the thermal resistance across the GBTIM under steady-state conditions and the thermal interface resistance is measured as low as 2.6 mm2 kW−1 with a pressure of 0.05 MPa, which is an order lower than that of the best commercialized thermal greases. Further, the GBTIM is formed into a desired shape to enhance thermal transfer, such as semi-liquid paste or thermal pad, which can be cut into a required shape.
This is a preview of subscription content, access via your institution.











References
J. Donald, M. Martonosi, in Proceedings of the 33rd International Symposium on Computer Architecture (ISCA), vol. 78 (2006)
T. Treurniet, V. Lammens, in 22nd IEEE SEMI-THERM Symposium, vol. 173 (2006)
I. Mudawar, IEEE Trans. Compon. Packag. Technol. 24, 122 (2001)
S. Whalen, M. Thompson, D. Bahr, C. Richards, R. Richards, Sens. Actuators A 104, 290 (2003)
U. Ghoshal, S. Ghoshal, C. McDowell, L. Shi, S. Cordes, M. Farinelli, Appl. Phys. Lett. 80, 3006 (2002)
G. Cha, Y. Sungtaek Ju, in ASME Int. Mech. Eng. Congress. Expos. Proc., vol. 12, p. 927 (2010)
J. Xu, T.S. Fisher, Int. J. Heat Mass Transf. 49, 1658 (2006)
H.F. Chuang, S.M. Cooper, M. Meyyappan, B.A. Cruden, J. Nanosci. Nanotechnol. 4, 964 (2004)
D. Chung, J. Mater. Eng. Perform. 10, 56 (2001)
A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007)
Y. Wu, C.H. Liu, H. Huang, S.S. Fan, Appl. Phys. Lett. 87, 3108 (2005)
B.A. Cola, X. Xu, T.S. Fisher, Appl. Phys. Lett. 90, 3513 (2007)
B.A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher, H. Hu, J. Appl. Phys. 101, 4313 (2007)
A. Hamdan, A. McLanahan, R. Richards, C. Richards, Exp. Therm. Fluid Sci. 35, 1250 (2011)
J. Liu, Y.X. Zhou, China Patent No. 02131419.5 (2002)
K.Q. Ma, J. Liu, Phys. Lett. A 361, 252 (2007)
Y.G. Deng, J. Liu, Heat Mass Transf. 46, 1327 (2010)
P.P. Li, J. Liu, Appl. Phys. Lett. 99, 094106 (2011)
P.P. Li, J. Liu, J. Electron. Packag. 133, 041009 (2011)
R.B. Booth, G.W. Grube, P.A. Gruber, I.Y. Khandros, R. Zingher, US Patent, No 5.198.189 (1992)
L.T. Taylor, J. Rancourt, US Patent, NO 5.792.236 (1998)
S.C. Hardy, J. Cryst. Growth 7, 602 (1985)
T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1993)
J.P. Gwinn, R.L. Webb, Microelectron. J. 34, 215 (2003)
M. Grujicic, C.L. Zhao, E.C. Dusel, Appl. Surf. Sci. 246, 290 (2005)
Acknowledgements
The authors acknowledge the valuable discussions with Prof. Yixin Zhou, Mr. Peipei Li, Ms. Haiyan Li and Mr. Yueguang Deng of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gao, Y., Liu, J. Gallium-based thermal interface material with high compliance and wettability. Appl. Phys. A 107, 701–708 (2012). https://doi.org/10.1007/s00339-012-6887-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00339-012-6887-5
Keywords
- Gallium
- Wettability
- High Thermal Conductivity
- Thermal Contact Resistance
- Copper Block