Skip to main content
Log in

Enhanced memory performance by tailoring the microstructural evolution of (ZrO2)0.6(SiO2)0.4 charge trapping layer in the nanocrystallites-based charge trap flash memory cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZrO2 nanocrystallites based charge trap memory cells by incorporating a (ZrO2)0.6(SiO2)0.4 film as a charge trapping layer and amorphous Al2O3 as tunneling and blocking layer were prepared and investigated. The precipitation reaction in charge trapping layer forming ZrO2 nanocrystallites during rapid thermal annealing was investigated by transmission electron microscopy. The density and size of ZrO2 nanocrystallites are the critical factors for controlling the charge storage characteristics. The ZrO2 nanocrystallites based memory cells after postannealing at 800 C for 60 s exhibit the best electrical characteristics and a low charge loss ∼5 % after 105 write/erase cycles operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Burkhardt, A. Jedaa, M. Novak, A. Ebel, K. Voitchovsky, F. Stellacci, A. Hirsch, M. Halik, Adv. Mater. 22, 2525 (2010)

    Article  Google Scholar 

  2. R.C.G. Naber, K. Asadi, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Adv. Mater. 22, 933 (2010)

    Article  Google Scholar 

  3. R.J. Tseng, J.X. Huang, J. Ouyang, R.B. Kaner, Y. Yang, Nano Lett. 5, 1077 (2005)

    Article  ADS  Google Scholar 

  4. S.H. Lee, Y. Jung, R. Agarwal, Nat. Nanotechnol. 2, 626 (2007)

    Article  ADS  Google Scholar 

  5. M.N. Kozicki, C. Gopalan, M. Balakrishnan, M. Mitkova, IEEE Trans. Nanotechnol. 5, 535 (2006)

    Article  ADS  Google Scholar 

  6. H.I. Hanafi, S.T. Tiwari, I. Khan, IEEE Trans. Electron Devices 43, 1553 (1996)

    Article  ADS  Google Scholar 

  7. J.S. Lee, Y.M. Kim, J.H. Kwon, H. Shin, B.H. Sohn, J. Lee, Adv. Mater. 21, 178 (2009)

    Article  Google Scholar 

  8. J. De Blauwe, IEEE Trans. Nanotechnol. 1, 72 (2002)

    Article  ADS  Google Scholar 

  9. Z.T. Liu, C. Lee, V. Narayanan, G. Pei, E.C. Kan, IEEE Trans. Electron Devices 49, 1606 (2002)

    Article  ADS  Google Scholar 

  10. E. Kapetanakis, P. Normand, D. Tsoukalas, K. Beltsios, J. Stoemenos, S. Zhang, J. van den Berg, Appl. Phys. Lett. 77, 3450 (2000)

    Article  ADS  Google Scholar 

  11. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, K. Chan, Appl. Phys. Lett. 68, 1377 (1996)

    Article  ADS  Google Scholar 

  12. J. Sarkar, S. Dey, D. Shahrjerdi, S.K. Banerjee, IEEE Electron Device Lett. 28, 449 (2007)

    Article  ADS  Google Scholar 

  13. C. Lee, J.-H. Kwon, J.-S. Lee, Y.-M. Kim, Y. Choi, H. Shin, J. Lee, B.-H. Sohn, Appl. Phys. Lett. 91, 153506 (2007)

    Article  ADS  Google Scholar 

  14. C.H. Lai, A. Chin, H.L. Kao, K.M. Chen, M. Hong, J. Kwo, C.C. Chi, in Dig. Tech. Pap.—Symp. VLSI Technol. (2006), p. 44

    Chapter  Google Scholar 

  15. Y.N. Tan, W.K. Chim, W.K. Choi, M.S. Joo, B.J. Cho, IEEE Trans. Electron Devices 53, 654 (2006)

    Article  ADS  Google Scholar 

  16. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  ADS  Google Scholar 

  17. T.H. Ng, W.K. Chim, W.K. Choi, V. Ho, L.W. Teo, A.Y. Du, C.H. Tung, Appl. Phys. Lett. 84, 4385 (2004)

    Article  ADS  Google Scholar 

  18. C.S. Lai, K.M. Fan, H.K. Peng, S.J. Lin, C.Y. Lee, C.F. Ai, Appl. Phys. Lett. 90, 172904 (2007)

    Article  ADS  Google Scholar 

  19. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)

    Article  ADS  Google Scholar 

  20. J.C. Wang, C.S. Lai, Y.K. Chen, C.T. Lin, C.P. Liu, M.R.S. Huang, Y.C. Fang, Electrochem. Solid-State Lett. 12, H204 (2009)

    Google Scholar 

  21. Z.J. Tang, H.N. Xu, H.T. Li, Y. Chen, Y.D. Xia, J. Yin, X.H. Zhu, Z.G. Liu, A.D. Li, F. Yan, Microelectron. Eng. 88, 3227 (2011)

    Article  Google Scholar 

  22. Y. Zhou, J. Yin, H.N. Xu, Y.D. Xia, Z.G. Liu, A.D. Li, Y.P. Gong, L. Pu, F. Yan, Y. Shi, Appl. Phys. Lett. 97, 143504 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (50972054), the State Key Program for Basic Research of China (Grant No. 2010CB934201), and The State Key Program for Science and Technology of China (Grant No. 2009ZX02039-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Z., Zhu, X., Xu, H. et al. Enhanced memory performance by tailoring the microstructural evolution of (ZrO2)0.6(SiO2)0.4 charge trapping layer in the nanocrystallites-based charge trap flash memory cells. Appl. Phys. A 108, 217–222 (2012). https://doi.org/10.1007/s00339-012-6877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6877-7

Keywords

Navigation