Skip to main content
Log in

First-principles calculations of BC4N nanostructures: stability and electronic structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we apply first-principles methods to investigate the stability and electronic structure of BC4N nanostructures which were constructed from hexagonal graphite layers where substitutional nitrogen and boron atoms are placed at specific sites. These layers were rolled up to form zigzag and armchair nanotubes, with diameters varying from 7 to 12 Å, or cut and bent to form nanocones, with 60 and 120 disclination angles. The calculation results indicate that the most stable structures are the ones which maximize the number of B–N and C–C bonds. It is found that the zigzag nanotubes are more stable than the armchair ones, where the strain energy decreases with increasing tube diameter D, following a 1/D 2 law. The results show that the 60 disclination nanocones are the most stable ones. Additionally, the calculated electronic properties indicate a semiconducting behavior for all calculated structures, which is intermediate to the typical behaviors found for hexagonal boron nitride and graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Iijima, Nature (London) 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 8, 1579 (1992)

    Article  ADS  Google Scholar 

  3. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 28, 335 (1994)

    Article  ADS  Google Scholar 

  4. A.R. Badzian, T. Niemyski, S. Appenheimer, E. Olkusnik, in Proc. Int. Conf. Chemical Vapor Deposition, vol. 3, ed. by F.A. Glaski (American Nuclear Society, Hinsdale, 1972)

    Google Scholar 

  5. J. Kouvetai, T. Sasaki, C. Shen, R. Hagiwara, M. Lerner, K.M. Krisnan, N. Bartlett, Synth. Met. 34, 1 (1989)

    Article  Google Scholar 

  6. I. Caretti, J.M. Albella, I. Jiménez, Diam. Relat. Mater. 16, 63 (2006)

    Article  ADS  Google Scholar 

  7. I. Caretti, R. Torres, R. Gago, A.R. Landa-Cánovas, I. Jiménez, Chem. Mater. 22, 1949 (2010)

    Article  Google Scholar 

  8. Z.M. Liu, Y. Zhu, Z.Q. Yang, J. Chem. Phys. 134, 074708 (2011)

    Article  ADS  Google Scholar 

  9. K. Kalyan, D. Jagadeesan, M. Upadhyay-Kahaly, U.V. Waghmare, S.K. Pati, M. Eswaramoorthy, C.N.R. Rao, J. Mater. Chem. 18, 83 (2008)

    Article  Google Scholar 

  10. X. Luo, Z. Liu, J. He, B. Xu, D. Yu, H.-T. Wang, Y. Tian, J. Appl. Phys. 105, 043509 (2009)

    Article  ADS  Google Scholar 

  11. M. Ge, K. Sattler, Appl. Phys. Lett. 64, 710 (1994)

    Article  ADS  Google Scholar 

  12. M. Ge, K. Sattler, Chem. Phys. Lett. 220, 192 (1994)

    Article  ADS  Google Scholar 

  13. L.R. Baylor, V.I. Merkulov, E.D. Ellis, M.A. Guillorn, D.H. Lowndes, A.V. Melechko, M.L. Simpson, J.H. Whealton, J. Appl. Phys. 91, 4602 (2002)

    Article  ADS  Google Scholar 

  14. K.A. Dean, B.R. Chamala, J. Appl. Phys. 85, 3832 (1999)

    Article  ADS  Google Scholar 

  15. I. Suarez-Martinez, M. Monthioux, C.P.J. Ewels, J. Nanosci. Nanotechnol. 9, 1 (2009)

    Article  Google Scholar 

  16. M. Yudasaka, S. Iijima, V.H. Crespi, Top. Appl. Phys. 111, 605 (2008)

    Article  Google Scholar 

  17. O.A. Shenderova, B.L. Lawson, D. Areshkin, D.W. Brenner, Nanotechnology 12, 191 (2001)

    Article  ADS  Google Scholar 

  18. R. Majidi, K.G. Tabrizi, Physica B 405, 2144 (2010)

    Article  ADS  Google Scholar 

  19. X. Yu, M. Tverdal, S. Raaen, G. Helgesen, K.D. Knudsen, Appl. Surf. Sci. 255, 1906 (2008)

    Article  ADS  Google Scholar 

  20. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quant. Chem. 65, 453 (1997)

    Article  Google Scholar 

  22. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  23. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Enrzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  25. S. Azevedo, Phys. Lett. A 351, 109 (2006)

    Article  ADS  Google Scholar 

  26. M.S.C. Mazzoni, R.W. Nunes, S. Azevedo, H. Chacham, Phys. Rev. B 73, 073108 (2006)

    Article  ADS  Google Scholar 

  27. S. Azevedo, M.S.C. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B 70, 205412 (2004)

    Article  ADS  Google Scholar 

  28. M. Matos, S. Azevedo, J.R. Kaschny, Solid State Commun. 149, 222 (2009)

    Article  ADS  Google Scholar 

  29. S. Azevedo, Phys. Lett. A 351, 109 (2006)

    Article  ADS  Google Scholar 

  30. H. Chacham, Phys. Rev. B 73, 073108 (2006)

    Article  ADS  Google Scholar 

  31. Ci. Lijie, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)

    Article  ADS  Google Scholar 

  32. S. Azevedo, F.B. Mota, Int. J. Quant. Chem. 108, 907 (2006)

    Google Scholar 

  33. M. Machado, P. Piquini, R. Mota, Nanotechnology 16, 302 (2005)

    Article  ADS  Google Scholar 

  34. S. Azevedo, R. Paiva, J.R. Kaschny, J. Phys., Condens. Matter 18, 10871 (2006)

    Article  ADS  Google Scholar 

  35. D.H. Robertson, W. Brenner, J.W. Mintmire, Phys. Rev. B 45, 12592 (1992)

    Article  ADS  Google Scholar 

  36. M. Machado, T. Kar, P. Piquini, Nanotechnology 22, 205706 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the substantial support given by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil, INCT—Nanomateriais de Carbono, and NanoBioTec during the realization of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Azevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, A., Azevedo, S., Machado, M. et al. First-principles calculations of BC4N nanostructures: stability and electronic structure. Appl. Phys. A 108, 185–193 (2012). https://doi.org/10.1007/s00339-012-6869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6869-7

Keywords

Navigation