Skip to main content
Log in

Irradiation induced changes in small angle grain boundaries in mosaic Cu thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied the effect of irradiation on small angle grain boundaries in mosaic structured Cu thin films. The films showed a decrease in mosaic spread via a narrowing of the full width at half maximum in XRD rocking curves and a smaller minimum yield of RBS channeling after irradiation. These data indicate the irradiation decreased the misorientation angles between mosaic blocks separated by small angle grain boundaries. Mechanisms involving interactions between grain boundary dislocations and irradiation induced defects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Samaras, P.M. Derlet, H. Van Swygenhoven, M. Victoria, Philos. Mag. 83, 3599 (2003)

    Article  ADS  Google Scholar 

  2. X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Science 327, 1631 (2010)

    Article  ADS  Google Scholar 

  3. T.D. Shen, S.H. Feng, M. Tang, J.A. Valdez, Y.Q. Wang, K.E. Sickafus, Appl. Phys. Lett. 90, 263115 (2007)

    Article  ADS  Google Scholar 

  4. S.J. Zinkle, in 15th International Symposium on Effects of Radiation on Material (1992), p. 749

    Chapter  Google Scholar 

  5. J.D. Embury, R.B. Nicholson, Acta Metall. 13, 403 (1965)

    Article  Google Scholar 

  6. J. Burke, D. Stuckey, Philos. Mag. 31, 1069 (1975)

    Article  ADS  Google Scholar 

  7. B.K. Basu, C. Elbaum, Acta Metall. 13, 117 (1965)

    Google Scholar 

  8. P.N.T. Unwin, G.W. Lorimer, R.B. Nicholson, Acta Metall. 17, 1363 (1969)

    Article  Google Scholar 

  9. M. Dollar, H. Gleiter, Scr. Metall. 19, 481 (1985)

    Article  Google Scholar 

  10. C.G. Darwin, the theory of X-ray reflection. Philos. Mag. 27, 675 (1914)

    Article  Google Scholar 

  11. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, 1978)

    Google Scholar 

  12. W.T. Read Jr, Dislocations in Crystals (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  13. M. Birkholz, Thin Film Analysis by X-ray Scattering (Wiley-VCH, New York, 2006)

    Google Scholar 

  14. L.V. Azaroff, Elements of X-ray Crystallography (McGraw-Hill, New York, 1968)

    Google Scholar 

  15. H. Trinkaus, B.N. Singh, J. Nucl. Mater. 323, 229 (2003)

    Article  ADS  Google Scholar 

  16. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2007)

    Google Scholar 

  17. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, The stopping and range in ions in matter. http://www.srim.org

  18. W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry (Academic Press, Orlando, 1978)

    Google Scholar 

  19. O. Henriksen, T. Laursen, E. Johnson, A. Johansen, L. Sarholt-Kristensen, J.L. Whitton, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 15, 356 (1986)

    Article  ADS  Google Scholar 

  20. H. Ishiwara, S. Furukawa, J. Appl. Phys. 47, 1686 (1976)

    Article  ADS  Google Scholar 

  21. H. Ishiwara, K. Hirosaka, M. Nagatomo, S. Furakawa, Surf. Sci. 86, 711 (1979)

    Article  ADS  Google Scholar 

  22. D. Sigurd, R.W. Bower, W.F. van der Weg, J.W. Mayer, Thin Solid Films 19, 319 (1973)

    Article  ADS  Google Scholar 

  23. M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  24. W.D. Callister Jr., Materials Science and Engineering: An Introduction, 5th edn. (Wiley, New York, 2000)

    Google Scholar 

  25. H. Ullmaier, W. Schilling, Radiation damage in metallic reactor materials, in Physics of Modern Materials, vol. I (IAEA, Vienna, 1980)

    Google Scholar 

  26. G.S. Was, T.R. Allen, Mater. Charact. 32, 239 (1994)

    Article  Google Scholar 

  27. L.E. Rehn, P.R. Okamoto, R.S. Averback, Phys. Rev. B, Condens. Matter Mater. Phys. 30, 3073 (1984)

    Article  ADS  Google Scholar 

  28. N.F. Mott, Proc. Phys. Soc. B 64, 729 (1951)

    Article  ADS  MATH  Google Scholar 

  29. J. Weertman, J. Appl. Phys. 26, 1213 (1955)

    Article  ADS  Google Scholar 

  30. J. Lothe, J. Appl. Phys. 31, 1077 (1960)

    Article  ADS  Google Scholar 

  31. R.M. Thomson, R.W. Balluffi, J. Appl. Phys. 33, 803 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  32. D.N. Seidman, R.W. Balluffi, Phys. Status Solidi 17, 531 (1966)

    Article  Google Scholar 

  33. R.W. Balluffi, Phys. Status Solidi 31, 443 (1969)

    Article  Google Scholar 

  34. D. Hull, D.J. Bacon, Introduction to Dislocations, 3rd edn. (Pergamon, Elmsford, 1984)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Materials at Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. The X-ray analysis portion of this work was supported by the Center for Integrated Nanotechnologies (CINT), the US Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (LANL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, E.G., Wang, Y.Q., Zou, G.F. et al. Irradiation induced changes in small angle grain boundaries in mosaic Cu thin films. Appl. Phys. A 108, 121–126 (2012). https://doi.org/10.1007/s00339-012-6865-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6865-y

Keywords

Navigation