Skip to main content
Log in

Preparation of Cu2O nanowires by thermal oxidation-plasma reduction method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Facial synthesis of cuprous oxide (Cu2O) nanowires by directly heating copper substrates is difficult; however, in this study, it was successfully done by thermal oxidation followed by a plasma reduction process. The preparation of CuO nanowires with an average diameter of 76.2 nm supported on the surface of copper substrate was conducted first in air at 500 °C for 3 hrs, and then the CuO nanowires were reduced into Cu2O in 15 min using either radio frequency (RF) N2 plasma or microwave (MW) N2 plasma. The characteristics of CuO and Cu2O nanowires were analyzed using XRD, FE-SEM, and TEM. The results showed that Cu2O nanowires can be successfully reduced from CuO nanowires by a simple, promising, and fast nitrogen plasma process. Moreover, in RF plasma, narrower and longer Cu2O nanowires can be produced as compared to MW plasma, because energetic N-containing species can reduce the nanowires at a relatively lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Ramirez-Ortiza, T. Ogura, J. Medina-Valtierra, S.E. Acosta-Ortiz, P. Bosch, J.A. De Los Reyes, V.H. Lara, Appl. Surf. Sci. 174, 177–184 (2001)

    Article  ADS  Google Scholar 

  2. L. Armelao, D. Barreca, M. Bertapelle, G. Bottaro, C. Sada, E. Tondello, Thin Solid Films 442, 48–52 (2004)

    Article  Google Scholar 

  3. S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, W. Assmann, Vacuum 57, 377–385 (2000)

    Article  Google Scholar 

  4. R. Boucher, J. Phys. Chem. Solids 66, 906–910 (2005)

    Article  ADS  Google Scholar 

  5. T. Maruyama, Sol. Energy Mater. Sol. Cells 56, 85–92 (1998)

    Article  Google Scholar 

  6. Z. Rosenstock, I. Riess, Solid State Ion. 136, 921–926 (2000)

    Article  Google Scholar 

  7. H. Matsumura, A. Fujii, T. Kitatani, Jpn. J. Appl. Phys. 35, 5631–5636 (1996)

    Article  ADS  Google Scholar 

  8. B. Balamurugan, B.R. Mehta, Thin Solid Films 396, 90–96 (2001)

    Article  ADS  Google Scholar 

  9. X.M. Liu, Y.C. Zhou, Appl. Phys. 81, 685–689 (2005)

    Article  Google Scholar 

  10. L. Gou, C.J. Murphy, J. Mater. Chem. 14, 735–738 (2004)

    Article  Google Scholar 

  11. M. Wei, J. Huo, Mater. Chem. Phys. 121, 291–294 (2010)

    Article  Google Scholar 

  12. J. Oh, Y. Tak, J. Lee, Electrochem. Solid-State Lett. 7, C27–C30 (2004)

    Article  Google Scholar 

  13. J. Oh, Y. Tak, J. Lee, Electrochem. Solid-State Lett. 8, C81–C84 (2005)

    Article  Google Scholar 

  14. A.L. Daltin, A. Addad, J.P. Chopart, J. Cryst. Growth 282, 414–420 (2005)

    Article  ADS  Google Scholar 

  15. Y.L. Liu, Y.C. Liu, R. Mu, H. Yang, C.L. Shao, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, Semicond. Sci. Technol. 20, 44–49 (2005)

    Article  ADS  Google Scholar 

  16. Y.H. Lee, I.C. Leu, M.T. Wu, J.H. Yen, K.Z. Fung, J. Alloys Compd. 427, 213–218 (2007)

    Article  Google Scholar 

  17. R. Inguanta, C. Sunseri, S. Piazza, Electrochem. Solid-State Lett. 10, K63–K66 (2007)

    Article  Google Scholar 

  18. R. Inguanta, S. Piazza, C. Sunseri, Electrochim. Acta 53, 6504–6512 (2008)

    Article  Google Scholar 

  19. S. Wang, Q. Huang, X. Wen, X.Y. Li, S. Yang, Phys. Chem. Chem. Phys. 4, 3425–3429 (2002)

    Article  Google Scholar 

  20. W. Wang, G. Wang, X. Wang, Y. Zhan, Y. Liu, C. Zheng, Adv. Mater. 14, 67–69 (2002)

    Article  ADS  Google Scholar 

  21. X. Jiang, T. Herricks, Y. Xia, Nano Lett. 2, 1333–1338 (2002)

    Article  ADS  Google Scholar 

  22. S. Han, H.Y. Chen, L.T. Kuo, C.H. Tsai, Thin Solid Films 517, 1195–1199 (2008)

    Article  ADS  Google Scholar 

  23. N.N. Loshkareva, Y.P. Sukhorukov, S.V. Naumov, B.A. Gizhevskii, G.N. Tatarinova, T.A. Belykh, Phys. Solid State 41, 1433–1436 (1999)

    Article  ADS  Google Scholar 

  24. D.W. Zhang, C.H. Chen, J. Zhang, F. Ren, J. Mater. Sci. 43, 1492–1496 (2008)

    Article  ADS  Google Scholar 

  25. V. Chakrapani, J. Thangala, M.K. Sunkara, Int. J. Hydrog. Energy 34, 9050–9059 (2009)

    Article  Google Scholar 

  26. E.C. Walter, M.P. Zach, F. Favier, B.J. Murray, K. Inazu, J.C. Hemminger, R.M. Penner, ChemPhysChem 4, 131–138 (2003)

    Article  Google Scholar 

  27. A.E. Rakhshani, Solid-State Electron. 29, 7–11 (1986)

    Article  ADS  Google Scholar 

  28. Y. Sun, R. Xu, J.Y. Yang, L. He, J.C. Nie, R.F. Dou, W. Zhou, L. Guo, Nanotechnology 21, 335605–335611 (2010)

    Article  Google Scholar 

  29. H. Yan, Y. Sun, L. He, J.C. Nie, Mater. Res. Bull. 46, 2120–2124 (2011)

    Article  Google Scholar 

  30. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 345, 377–380 (2001)

    Article  ADS  Google Scholar 

  31. J.L. Gole, J.D. Stout, W.L. Rauch, Z.L. Wang, Appl. Phys. Lett. 76, 2346–2348 (2000)

    Article  ADS  Google Scholar 

  32. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947–1949 (2001)

    Article  ADS  Google Scholar 

  33. P. Yang, R. Yan, M. Fardy, Nano Lett. 10, 1529–1536 (2010)

    Article  ADS  Google Scholar 

  34. G.A. Adegboyega, Niger. J. Renew. Energy 1, 21–25 (1990)

    Google Scholar 

  35. X. Jiang, T. Herricks, Y. Xia, Nano Lett. 2, 1333–1338 (2002)

    Article  ADS  Google Scholar 

  36. C.M. Tsai, G.D. Chen, T.C. Tseng, C.Y. Lee, C.T. Huang, W.Y. Tsai, W.C. Yang, M.S. Yeh, T.R. Yew, Acta Mater. 57, 1570–1576 (2009)

    Article  Google Scholar 

  37. G. Honjo, J. Phys. Soc. Jpn. 4, 330–333 (1949)

    Article  ADS  Google Scholar 

  38. V.R. Parlar, P. Ayyub, Phys. Rev. B 53, 2167–2170 (1996)

    Article  ADS  Google Scholar 

  39. E.A.H. Timmermans, J. Jonkers, A. Rodero, M.C. Quintero, A. Sola, A. Gamero, D.C. Schram, J.A.M. van der Mullen, Spectrochim. Acta B 53, 1553–1566 (1998)

    Article  ADS  Google Scholar 

  40. E.A.H. Timmermans, J. Jonkers, A. Rodero, M.C. Quintero, A. Sola, A. Gamero, D.C. Schram, J.A.M. van der Mullen, Spectrochim. Acta B 54, 1085–1098 (1999)

    Article  ADS  Google Scholar 

  41. J.L. Hueso, A.R. Gonzalez-Elipe, J. Cotrino, A. Caballero, J. Phys. Chem. A 109, 4930–4938 (2005)

    Article  Google Scholar 

  42. Q. Sun, A.M. Zhu, X.F. Yang, J.H. Niu, Y. Xu, Z.M. Song, J. Liu, Chin. Chem. Lett. 16, 839–842 (2005)

    Google Scholar 

  43. L.H. Cao, K.A. Khor, L. Fu, F. Boey, J. Mater. Process. Technol. 89–90, 392–398 (1999)

    Article  Google Scholar 

  44. F.Y.C. Boey, X.L. Zhao, A.I.Y. Tok, J. Mater. Res. 19, 1356–1363 (2004)

    Article  ADS  Google Scholar 

  45. M. Rajabian, D.V. Gravelle, S. Vacquie, Plasma Chem. Plasma Process. 24, 285–305 (2004)

    Article  Google Scholar 

  46. C.O. Laux, R.J. Gessman, C.H. Kruger, F. Roux, F. Michaud, S.P. Davis, J. Quant. Spectrosc. Radiat. Transf. 68, 473–482 (2001)

    Article  ADS  Google Scholar 

  47. C.H. Tsai, H.H. Yang, C.J.G. Jou, H.M. Lee, J. Hazard. Mater. 143, 409–414 (2007)

    Article  Google Scholar 

  48. C.H. Tsai, K.T. Chen, Int. J. Hydrog. Energy 34, 833–838 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Science Council of Taiwan for its financial support under grants NSC 98-2221-E-151-009-MY2 and NSC 99-2622-E-151-011-CC3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hsien Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, MJ., Wu, CY., Kuo, YM. et al. Preparation of Cu2O nanowires by thermal oxidation-plasma reduction method. Appl. Phys. A 108, 133–141 (2012). https://doi.org/10.1007/s00339-012-6859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6859-9

Keywords

Navigation