Skip to main content
Log in

Measurements of the thermal, dielectric, piezoelectric, pyroelectric and elastic properties of porous PZT samples

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The introduction of porosity into ferroelectric ceramics has been of great interest in recent years. In particular, studies of porous lead-zirconate-titanate ceramic (PZT) have been made. In the research reported, samples of Ferroperm Pz27 with porosities of 20, 25 and 30% were studied. Very complete measurements were made of all of the physical properties relevant for ferroelectric applications including thermal conductivity and diffusivity, heat capacity, dielectric, pyroelectric, piezoelectric and elastic properties. Scanning electron micrographs indicated a change from 3-0 to 3-3 connectivity with increasing porosity. Although most of the physical properties are degraded by the presence of porosity, both piezoelectric and pyroelectric figures-of-merit are improved because of the markedly reduced relative permittivity. Porous ferroelectric ceramics are very promising materials for a number of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Guo, C.A. Wang, A.K. Yang, J. Eur. Ceram. Soc. 31, 605 (2011)

    Article  Google Scholar 

  2. R. Guo et al., J. Appl. Phys. 108, 124112 (2010)

    Article  ADS  Google Scholar 

  3. Z.M. He, J. Ma, R.F. Zhang, Ceram. Int. 30, 1353 (2004)

    Article  Google Scholar 

  4. F. Levassort et al., J. Electroceram. 19, 125 (2007)

    Google Scholar 

  5. D. Piazza et al., J. Electroceram. 24, 170 (2010)

    Article  Google Scholar 

  6. B. Praveenkumar, H.H. Kumar, D.K. Kharat, Bull. Mater. Sci. 28, 453 (2005)

    Article  Google Scholar 

  7. B. Praveenkumar, H.H. Kumar, D.K. Kharat, J. Mater. Sci., Mater. Electron. 17, 515 (2006)

    Article  Google Scholar 

  8. A.N. Rybjanets, Porous piezoelectric ceramics—a historical overview, in 2010 IEEE International Symposium on the Applications of Ferroelectrics (ISAF2010) (2010)

    Google Scholar 

  9. V. Stancu et al., Thin Solid Films 515, 6557 (2007)

    Article  ADS  Google Scholar 

  10. G. Suyal, N. Setter, J. Eur. Ceram. Soc. 24, 247 (2004)

    Article  Google Scholar 

  11. R.W. Whatmore et al., Phys. Scr. T 129, 6 (2007)

    Article  ADS  Google Scholar 

  12. L. Pardo et al., J. Electroceram. 19, 413 (2007)

    Article  Google Scholar 

  13. C.P. Shaw, R. Whatmore, J.R. Alcock, J. Am. Ceram. Soc. 90, 137 (2007)

    Article  Google Scholar 

  14. A.K. Yang et al., J. Am. Ceram. Soc. 93, 1984 (2010)

    Google Scholar 

  15. A.N. Rybjanets, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1492 (2011)

    Article  Google Scholar 

  16. W. Wersing, K. Lubitz, J. Mohaupt, Ferroelectrics 68, 77 (1986)

    Article  Google Scholar 

  17. G. Suyal, A. Seifert, N. Setter, Appl. Phys. Lett. 81, 1059 (2002)

    Article  ADS  Google Scholar 

  18. Meggitt Sensing Systems, http://www.meggitt.com

  19. R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)

    Article  Google Scholar 

  20. S.B. Lang et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2608 (2007)

    Article  Google Scholar 

  21. S.B. Lang, Ferroelectrics 93, 87 (1989)

    Article  Google Scholar 

  22. S. Muensit, S.B. Lang, Ferroelectrics 293, 341 (2003)

    Article  Google Scholar 

  23. J.C. Lashley et al., Cryogenics 43, 369 (2003)

    Article  ADS  Google Scholar 

  24. Meggitt Sensing Systems, Ferroperm\(^{\mbox{\textregistered}}\) website, http://www.ferroperm-piezo.com

  25. S.B. Lang, F. Steckel, Rev. Sci. Instrum. 36, 929 (1965)

    Article  ADS  Google Scholar 

  26. R.L. Byer, C.B. Roundy, Ferroelectrics 3, 333 (1972)

    Article  Google Scholar 

  27. A.G. Chynoweth, J. Appl. Phys. 27, 78 (1956)

    Article  ADS  Google Scholar 

  28. M. Alguero et al., J. Am. Ceram. Soc. 87, 209 (2004)

    Article  Google Scholar 

  29. R. Holland, IEEE Trans. Sonics Ultrason. SU-14, 18 (1967)

    Article  Google Scholar 

  30. IEEE Standard on Piezoelectricity. IEEE Std 176-1987 (1987)

  31. R.W. Whatmore, Rep. Prog. Phys. 49, 1335 (1986)

    Article  ADS  Google Scholar 

  32. G.W. Taylor et al., Piezoelectricity (Gordon & Breach, London, 1985)

    Google Scholar 

  33. K. Uchino, Ferroelectric Devices (Dekker, New York, 2000)

    Google Scholar 

Download references

Acknowledgements

The authors thank J.C. Lashley (Los Alamos Scientific Laboratory) and Y.W. Wong (Hong Kong Polytechnic University) for making the heat capacity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney B. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, S.B., Ringgaard, E. Measurements of the thermal, dielectric, piezoelectric, pyroelectric and elastic properties of porous PZT samples. Appl. Phys. A 107, 631–638 (2012). https://doi.org/10.1007/s00339-012-6846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6846-1

Keywords

Navigation