Skip to main content
Log in

Effect of scratching speed on deformation of soda–lime–silica glass

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The grinding and polishing of a fundamentally brittle material like glass to an utmost precision level for ultra-sophisticated applications ranging from mobile devices to aerospace as well as space shuttle components to biomedical appliances pose a big challenge today. Looking simplistically, the grinding and polishing processes are basically material removal by multiple scratching at a given speed. Unfortunately however, the role of the scratching speed in affecting the material removal mechanism in soda–lime–silica (SLS) glass is yet to be comprehensively understood. Therefore, the present work explores the surface and subsurface deformation mechanisms of SLS glass scratched under a normal load of 5 N at various speeds in the range of 100–1000 μm s−1 with a diamond indenter of ∼200 μm tip radius. The results show important roles of the time of contact, the tensile stress behind the indenter and the shear stress just beneath the indenter in governing the material removal mechanisms of the SLS glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.V. Swain, Proc. R. Soc. Lond. A 366, 575 (1979)

    Article  ADS  Google Scholar 

  2. A.K. Mukhopadhyay, D. Chakroborty, M.V. Swain, Y.-W. Mai, J. Eur. Ceram. Soc. 17, 91 (1997)

    Article  Google Scholar 

  3. M. Klecka, G. Subhash, Wear 265, 612 (2008)

    Article  Google Scholar 

  4. H. Kasem, S. Bonnamy, Y. Berthier, P. Jacquemard, Tribol. Int. 43, 1951 (2010)

    Article  Google Scholar 

  5. O. Borrero-López, M. Hoffman, A. Bendavid, P.J. Martin, Thin Solid Films 519, 7925 (2011)

    Article  ADS  Google Scholar 

  6. A. Vencl, S. Arostegui, G. Favaro, F. Zivic, M. Mrdak, S. Mitrovic, V. Popovic, Tribol. Int. 44, 1281 (2011)

    Article  Google Scholar 

  7. R. Crombez, J. McMinis, V.S. Veerasamy, W. Shen, Tribol. Int. 44, 55 (2011)

    Article  Google Scholar 

  8. J.B.D. Veldkamp, N. Hattu, V.A.C. Snijders, in Fracture Mechanics of Ceramics, vol. 3, ed. by R.C. Bradt, D.P.H. Hasselman, F.F. Lange (Plenum, New York, 1978), pp. 273–300

    Google Scholar 

  9. B.R. Lawn, Proc. R. Soc. Lond. A 299, 307 (1967)

    Article  ADS  Google Scholar 

  10. K. Li, Y. Shapiro, J.C.M. Li, Acta Mater. 46, 5569 (1998)

    Article  Google Scholar 

  11. F. Petit, C. Ott, F. Cambier, J. Eur. Ceram. Soc. 29, 1299 (2009)

    Article  Google Scholar 

  12. W. Gu, Z. Yao, X. Liang, Wear 270, 241 (2011)

    Article  Google Scholar 

  13. H.B. Abdelounis, K. Elleuchb, R. Vargiolu, H. Zahouani, A.L. Bot, Wear 266, 621 (2009)

    Article  Google Scholar 

  14. V.L. Houerou, J.C. Sangleboeuf, S. Deriano, T. Rouxel, G. Duisit, J. Non-Cryst. Solids 316, 54 (2003)

    Article  Google Scholar 

  15. V.R. Howes, A. Szameitat, J. Mater. Sci. Lett. 3, 872 (1984)

    Article  Google Scholar 

  16. Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, Y. Guo, Opt. Express 18, 17180 (2010)

    Article  ADS  Google Scholar 

  17. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, O. Rondeau, Opt. Express 17, 20448 (2009)

    Article  ADS  Google Scholar 

  18. F. Yang, J. Non-Cryst. Solids 351, 3861 (2005)

    Article  ADS  Google Scholar 

  19. P. Bandyopadhyay, A. Dey, A.K. Mukhopadhyay, Int. J. Appl. Glass Sci. (2012). doi:10.1111/j.2041-1294.2011.00073.x

    Google Scholar 

  20. P. Bandyopadhyay, A. Dey, S. Roy, A.K. Mukhopadhyay, J. Non-Cryst. Solids (2012). doi:10.1016/j.jnoncrysol.2012.02.006

    Google Scholar 

  21. P. Bandyopadhyay, A. Dey, S. Roy, N. Dey, A.K. Mukhopadhyay, Appl. Phys. A (2012). doi:10.1007/s00339-012-6828-3

    Google Scholar 

  22. B.R. Lawn, N.P. Padture, H.D. Cai, F. Guiberteau, Science 263, 1114 (1994)

    Article  ADS  Google Scholar 

  23. B.R. Lawn, F.C. Frank, Proc. R. Soc. Lond. A 299, 291 (1967)

    Article  ADS  Google Scholar 

  24. C.E. Packard, C.A. Schuh, Acta Mater. 55, 5348 (2007)

    Article  Google Scholar 

  25. R.W.K. Honeycombe, Plastic Deformation of Metals, 2nd edn. (Edward Arnold, London, 1984)

    Google Scholar 

  26. A. Puthucode, R. Banerjee, S. Vadlakonda, R. Mirshams, M.J. Kaufman, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 39, 1552 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Permission of Director, CSIR-CGCRI, Kolkata to publish this work and financial supports of CSIR (Project No. NWP 0027) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop K. Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, P., Dey, A., Mandal, A.K. et al. Effect of scratching speed on deformation of soda–lime–silica glass. Appl. Phys. A 107, 685–690 (2012). https://doi.org/10.1007/s00339-012-6844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6844-3

Keywords

Navigation