Skip to main content
Log in

Effect of hydrogen on surface texturing and crystallization of a-Si:H thin film irradiated by excimer laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hydrogenated amorphous silicon (a-Si:H) thin films have been considered for use in solar cell applications because of their significantly reduced cost compared to crystalline bulk silicon. However, their overall efficiency and stability are lower than that of their bulk crystalline counterpart. Limited work has been performed on simultaneously solving the efficiency and stability issues of a-Si:H. Previous work has shown that surface texturing and crystallization on a-Si:H thin film can be achieved through a single-step laser processing, which can potentially alleviate the disadvantages of a-Si:H in solar cell applications. In this study, hydrogenated and dehydrogenated amorphous silicon thin films deposited on glass substrates were irradiated by KrF excimer laser pulses and the effect of hydrogen on surface morphologies and microstructures is discussed. Sharp spikes are focused only on hydrogenated films, and the large-grained and fine-grained regions caused by two crystallization processes are also induced by presence of hydrogen. Enhanced light absorptance is observed due to light trapping based on surface geometry changes of a-Si:H films, while the formation of a mixture of nanocrystalline silicon and original amorphous silicon after crystallization suggests that the overall material stability can potentially improve. The relationship between crystallinity, fluence and number of pulses is also investigated. Furthermore, a step-by-step crystallization process is introduced to prevent the hydrogen from diffusing out in order to reduce the defect density, and the relationship between residue hydrogen concentration, fluence and step width is discussed. Finally, the combined effects show that the single-step process of surface texturing and step-by-step crystallization induced by excimer laser processing are promising for a-Si:H thin-film solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2003)

    Book  Google Scholar 

  2. K.L. Chopra, P.D. Paulson, V. Dutta, Prog. Photovolt. 12, 69 (2004)

    Article  Google Scholar 

  3. L.L. Kazmerski, J. Electron Spectrosc. Relat. Phenom. 150, 105 (2006)

    Article  Google Scholar 

  4. R.W. Miles, K.M. Hynes, I. Forbes, Prog. Cryst. Growth Charact. Mater. 51, 1 (2005)

    Article  Google Scholar 

  5. D.L. Staebler, C.R. Wronski, J. Appl. Phys. 51 (1980)

  6. K.S. Martirosyan, A.S. Hovhannisyan, V.M. Arouiounian, Phys. Status Solidi C 4, 2103 (2007)

    Article  ADS  Google Scholar 

  7. J.D. Hylton, A.R. Burgers, W.C. Sinke, J. Electrochem. Soc. 151, G408 (2004)

    Article  Google Scholar 

  8. C.H. Crouch, J.E. Carey, J.M. Warrender, M.J. Aziz, E. Mazur, F.Y. Genin, Appl. Phys. Lett. 84, 1850 (2004)

    Article  ADS  Google Scholar 

  9. B.K. Nayak, M.C. Gupta, Appl. Phys. A, Mater. Sci. Process. 89, 663 (2007)

    Article  ADS  Google Scholar 

  10. K. Yamamoto, A. Nakajima, Y. Masashi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, T. Meguro, T. Matsuda, M. Kondo, T. Sasaki, Y. Tawada, Sol. Energy 77, 939 (2004)

    Article  Google Scholar 

  11. B.R. Tull, J.E. Carey, E. Mazur, J.P. McDonald, S.M. Yalisove, Mater. Res. Soc. Bull. 31, 626 (2006)

    Article  Google Scholar 

  12. D.H. Lowndes, J.D. Fowlkes, A.J. Pedraza, Appl. Surf. Sci. 154, 647 (2000)

    Article  ADS  Google Scholar 

  13. H. Wang, P. Kongsuwan, G. Satoh, Y.L. Yao, Int. J. Adv. Manuf. Technol. (accepted)

  14. H. Wang, P. Kongsuwan, G. Satoh, Y.L. Yao, J. Manuf. Sci. Eng. (under review)

  15. J. Im, H. Kim, M. Thompson, Appl. Phys. Lett. 63, 1969 (1993)

    Article  ADS  Google Scholar 

  16. M. Miyasaka, J. Stoemenos, J. Appl. Phys. 86, 5556 (1999)

    Article  ADS  Google Scholar 

  17. E. Mathe, A. Naudon, M. Elliq, E. Fogarassy, S. Unamuno, Appl. Surf. Sci. 54, 392 (1992)

    Article  ADS  Google Scholar 

  18. H. Dehghanpour, P. Parvin, B. Sajad, S. Nour-Azar, Appl. Surf. Sci. 255, 4664 (2009)

    Article  ADS  Google Scholar 

  19. A. Polman, S. Roorda, P. Stolk, W. Sinke, J. Cryst. Growth 108, 114 (1991)

    Article  ADS  Google Scholar 

  20. J. Tsao, P. Peercy, Phys. Rev. Lett. 58, 2782 (1987)

    Article  ADS  Google Scholar 

  21. S. Roorda, W. Sinke, Appl. Surf. Sci. 36, 588 (1989)

    Article  ADS  Google Scholar 

  22. A. Goetzberger, J. Knobloch, B. Voss, Crystalline Silicon Solar Cells (Wiley, Chichester, 1998)

    Google Scholar 

  23. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford Univ. Press, London, 1958)

    Google Scholar 

  24. S. Unamuno, E. Fogarassy, Appl. Surf. Sci. 36, 1 (1989)

    Article  Google Scholar 

  25. C.K. Ong, E.H. Sin, H.S. Tan, J. Opt. Soc. Am. B 3, 812 (1986)

    Article  ADS  Google Scholar 

  26. K.W. Kolasinski, Curr. Opin. Solid State Mater. Sci. 11, 76 (2007)

    Article  ADS  Google Scholar 

  27. D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, 2000)

    Google Scholar 

  28. C.K. Ong, H.S. Tan, E.H. Sin, Mater. Sci. Eng. 79, 79 (1986)

    Article  Google Scholar 

  29. A. Bejan, Heat Transfer (Wiley, New York, 1993)

    Google Scholar 

  30. A.M. Prokhorov, V.I. Konov, I. Ursu, N. Mihailescu, Laser Heating of Metals (Taylor & Francis, London, 1990)

    Google Scholar 

  31. T. Schwarz-Selinger, D.G. Cahill, S. Chen, S. Moon, C.P. Griogoropoulos, Phys. Rev. B, Condens. Matter 64, 155323 (2001)

    Article  ADS  Google Scholar 

  32. A. Heya, T. Serikawa, N. Kawamoto, N. Matsuo, Jpn. J. Appl. Phys. 47, 1853 (2008)

    Article  ADS  Google Scholar 

  33. Q. Hu, Dynamics of melt-mediated crystallization of amorphous silicon films. Ph.D. dissertation, Columbia University (2010)

  34. P. Lengsfeld, N. Nickel, W. Fuhs, Appl. Phys. Lett. 76, 1680 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The use of material characterization equipment at Materials Research Science and Engineering Center, Columbia University, is gratefully acknowledged. The authors also would like to thank Prof. Vijay Modi, Department of Mechanical Engineering, Columbia University, and Prof. Jeffrey M. Gordon, Department of Solar Energy and Environmental Physics, Ben-Gurion University of the Negev, for the helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Lusquiños, F. & Yao, Y.L. Effect of hydrogen on surface texturing and crystallization of a-Si:H thin film irradiated by excimer laser. Appl. Phys. A 107, 307–320 (2012). https://doi.org/10.1007/s00339-012-6843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6843-4

Keywords

Navigation