Skip to main content

Advertisement

Log in

Fluoroethylenepropylene ferroelectrets with patterned microstructure and high, thermally stable piezoelectricity

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Layered fluoroethylenepropylene (FEP) ferroelectret films were prepared from sheets of FEP films by template-patterning followed by a fusion-bonding process and contact charging. The layered ferroelectret films show consistency and regularity in their void structures and good bonding of the layers. For films composed of two 12.5 μm thick FEP layers and a typical void of 60 μm height, the critical voltage necessary for the built-up of the “macro-dipoles” in the inner voids is approximately 800 V. At room temperature, Young’s modulus in the thickness direction, determined from dielectric resonance spectra of the fabricated films with a typical thickness of 85 μm, is about 0.21 MPa. Initial quasistatic piezoelectric d 33 coefficients of samples contact charged at a peak voltage of 1500 V are in the range of 1000–3000 pC/N. From these, ferroelectrets with high quasistatic and dynamic (up to 20 kHz) d 33 coefficients of up to 1000 pC/N and 400 pC/N, respectively, which are thermally stable at 120°C, can be obtained by proper annealing treatment. This constitutes a significant improvement compared to previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Bauer, R. Gerhard-Multhaupt, G.M. Sessler, Phys. Today 57(2), 37 (2004)

    Article  Google Scholar 

  2. R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 9, 850 (2002)

    Article  Google Scholar 

  3. S. Bauer, IEEE Trans. Dielectr. Electr. Insul. 13, 953 (2006)

    Google Scholar 

  4. J. Lekkala, R. Poramo, K. Nyholm, T. Kaikkonen, Med. Biol. Eng. Comput. 34, 67 (1996)

    Google Scholar 

  5. www.emfit.com (2012)

  6. J. Hillenbrand, G.M. Sessler, J. Acoust. Soc. Am. 116, 3267 (2004)

    Article  ADS  Google Scholar 

  7. M. Dansachmüller, I. Minev, P. Bartu, I. Graz, N. Arnold, S. Bauer, Appl. Phys. Lett. 91, 222906 (2007)

    Article  ADS  Google Scholar 

  8. I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, S. Bauer, S.P. Lacour, S. Wagner, Appl. Phys. Lett. 89, 073501 (2006)

    Article  ADS  Google Scholar 

  9. J. Hillenbrand, M. Kodejska, Y. Garcin, H. von Seggern, G.M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 17, 1021 (2010)

    Article  Google Scholar 

  10. X. Zhang, J. Huang, J. Chen, Z. Wan, S. Wang, Z. Xia, Appl. Phys. Lett. 91, 182901 (2007)

    Article  ADS  Google Scholar 

  11. E. Saarimäki, M. Paajanen, A. Savijärvi, H. Minkkinen, M. Wegener, O. Voronina, R. Schulze, W. Wirges, R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 13, 963 (2006)

    Google Scholar 

  12. W. Wirges, M. Wegener, O. Voronina, L. Zirkel, R. Gerhard-Multhaupt, Adv. Funct. Mater. 17, 324 (2007)

    Article  Google Scholar 

  13. P. Fang, M. Wegener, W. Wirges, R. Gerhard, Appl. Phys. Lett. 90, 192908 (2007)

    Article  ADS  Google Scholar 

  14. G.S. Neugschwandtner, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, Appl. Phys. A 70, 1 (2000)

    Article  ADS  Google Scholar 

  15. R. Gerhard-Multhaupt, W. Künstler, T. Görne, A. Pucher, T. Weinhold, M. Seiß, Z. Xia, A. Wedel, R. Danz, IEEE Trans. Dielectr. Electr. Insul. 7, 480 (2000)

    Article  Google Scholar 

  16. Z. Hu, H. Von Seggern, J. Appl. Phys. 99, 024102 (2006)

    Article  ADS  Google Scholar 

  17. X. Zhang, J. Hillenbrand, G.M. Sessler, Appl. Phys. A 84, 139 (2006)

    Article  ADS  Google Scholar 

  18. X. Zhang, J. Hillenbrand, G.M. Sessler, J. Appl. Phys. 101, 054114 (2007)

    Article  ADS  Google Scholar 

  19. J. Huang, X. Zhang, Z. Xia, X. Wang, J. Appl. Phys. 103, 084111 (2008)

    Article  ADS  Google Scholar 

  20. R.A.P. Altafim, X. Qiu, W. Wirges, R. Gerhard, R.A.C. Altafim, H.C. Basso, W. Jenninger, J. Wagner, J. Appl. Phys. 106, 014106 (2009)

    Article  ADS  Google Scholar 

  21. X. Zhang, X. Wang, G. Cao, D. Pan, Z. Xia, Appl. Phys. A 97, 859 (2009)

    Article  ADS  Google Scholar 

  22. X. Zhang, G. Cao, Z. Sun, Z. Xia, J. Appl. Phys. 108, 064113 (2010)

    Article  ADS  Google Scholar 

  23. Z. Sun, X. Zhang, Z. Xia, X. Qiu, W. Wirges, R. Gerhard, C. Zeng, C. Zhang, B. Wang, Appl. Phys. A 105, 197 (2011)

    Article  ADS  Google Scholar 

  24. S. Zhukov, F. Fedosov, H. von Seggern, J. Phys. D, Appl. Phys. 44, 105501 (2011)

    Article  ADS  Google Scholar 

  25. H. von Seggern, S. Zhukov, S. Fedosov, IEEE Trans. Dielectr. Electr. Insul. 18, 49 (2011)

    Article  Google Scholar 

  26. Z. An, J. Yao, M. Mao, Y. Zhang, Z. Xia, J. Electrost. 68, 523 (2010)

    Article  Google Scholar 

  27. G.M. Sessler, Electrets, 3rd edn. (Springer, New York, 1999)

    Google Scholar 

  28. G.S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, S. Bauer, J. Hillenbrand, R. Kressmann, G.M. Sessler, M. Paajanen, J. Lekkala, Appl. Phys. Lett. 77, 3827 (2000)

    Article  ADS  Google Scholar 

  29. A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 10, 842 (2003)

    Article  Google Scholar 

  30. J. Hillenbrand, G.M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 11, 72 (2004)

    Article  Google Scholar 

  31. J. Hillenbrand, G.M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 7, 537 (2000)

    Article  Google Scholar 

  32. M. Lindner, S. Bauer-Gogonea, S. Bauer, M. Paajanen, J. Raukola, J. Appl. Phys. 91, 5283 (2002)

    Article  ADS  Google Scholar 

  33. J. Hillenbrand, G.M. Sessler, in Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Press, New York, 2000), pp. 161–165

    Google Scholar 

  34. M. Paajanen, H. Välimäki, J. Lekkala, J. Electrost. 48, 193 (2000)

    Article  Google Scholar 

  35. J. Hillenbrand, G.M. Sessler, X. Zhang, J. Appl. Phys. 98, 064105 (2005)

    Article  ADS  Google Scholar 

  36. R. Schwödiauer, I. Graz, S. Bauer, in IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference (2004), pp. 134–137

    Google Scholar 

  37. F. Paschen, Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann. Phys. (Leipz.) 273(5), 69 (1889)

    Article  ADS  Google Scholar 

  38. M. Wegener, M. Paajanen, W. Wirges, R. Gerhard-Multhaupt, in IEEE 11th International Symposium on Electrets (2002), pp. 54–57

    Chapter  Google Scholar 

  39. E. Meyer, E.-G. Neumann, Physikalische und Technische Akustik, 3rd edn. (1979)

Download references

Acknowledgements

The authors want to dedicate this article to Professor Reimund Gerhard at the occasion of his 60th birthday. In addition, the authors gratefully acknowledge financial support by the “Hessische Ministerium für Wissenschaft und Kunst”, the “Deutsche Forschungsgemeinschaft” (DFG), the Natural Science Foundation of China (NSFC, No. 50873078), and the State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University (EIPE11203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Sessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Hillenbrand, J., Sessler, G.M. et al. Fluoroethylenepropylene ferroelectrets with patterned microstructure and high, thermally stable piezoelectricity. Appl. Phys. A 107, 621–629 (2012). https://doi.org/10.1007/s00339-012-6840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6840-7

Keywords

Navigation