Skip to main content
Log in

Relaxation processes and structural transitions in stretched films of polyvinylidene fluoride and its copolymer with hexafluoropropylene

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Relaxation processes and structural transitions in nonstretched and uniaxially stretched films of poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) and its homopolymer polyvinylidene fluoride (PVDF) for comparison were investigated with the aim of understanding the electromechanical properties of this lower-modulus ferroelectric copolymer. The mechanical and the dielectric response at the glass transition (α a relaxation) exhibit similar temperature dependence of the relaxation time, whereas mechanical and dielectric processes above the glass transition are not related. They represent a continuous softening process within the amorphous phase and the dielectric α c relaxation, respectively. The latter is attributed to conformational changes of VDF segments in lamellae of spherulites constituting the nonpolar crystalline α phase. Furthermore, there is a contribution from melting of secondary crystallites formed in the amorphous phase during annealing or storage. Mechanically, this transition appears in nonstretched and stretched films as an accelerated decrease of the elastic modulus that terminates the rubber plateau. Dielectrically, this transition becomes visible as a frequency-independent loss peak only in stretched films, because stretching removes the α c relaxation, which superimposes the transition in nonstretched films. Melting of secondary crystallites is shown to appear in the homopolymer, too, though less pronounced because of more complete primary crystallisation.

Stretching increases the modulus above the glass transition only slightly, and it does not significantly influence the softening process. On the other hand, stretching causes a spontaneous polarisation and introduces order within the amorphous phase, rendering it more polar. Melting of secondary crystallites provides an additional contribution to the polarisation. These findings may explain the relatively high electromechanical activity of P(VDF-HFP) but also its relatively low thermal stability. Moreover, they may be important for correct procedure and analysis of temperature-dependent dielectric measurements on partially crystalline polymers, in particular on those with less favourable sterical conditions for primary crystallisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Tournut, in Modern Fluoropolymers, ed. by J. Scheirs (Wiley, Chichester, 1997), pp. 577–596

    Google Scholar 

  2. H. Kawai, Jpn. J. Appl. Phys. 8, 975–976 (1969)

    Article  ADS  Google Scholar 

  3. J.G. Bergman, J.H. McFee, G.R. Crane, Appl. Phys. Lett. 18, 203–205 (1971)

    Article  ADS  Google Scholar 

  4. N. Koizumi, in Ferroelectric Polymers, ed. by H.S. Nalwa (Marcel Dekker, New York, 1995), pp. 261–279

    Google Scholar 

  5. A.J. Lovinger, Science 220(4602), 1115–1121 (1983)

    Article  ADS  Google Scholar 

  6. R.G. Kepler, R.A. Anderson, Adv. Phys. 41, 1–57 (1992)

    Article  ADS  Google Scholar 

  7. T. Furukawa, Phase Transit. 18, 143–211 (1989)

    Article  Google Scholar 

  8. T. Furukawa, Key Eng. Mater. 92–93, 15–30 (1994)

    Article  Google Scholar 

  9. T. Furukawa, Adv. Colloid Interface Sci. 71–72, 183–208 (1997)

    Google Scholar 

  10. K. Tashiro, in Ferroelectric Polymers, ed. by H.S. Nalwa (Marcel Dekker, New York, 1995), pp. 63–181

    Google Scholar 

  11. V.V. Kochervinskii, Russ. Chem. Rev. 65(10), 865–913 (1996)

    Article  ADS  Google Scholar 

  12. X. Lu, A. Schirokauer, J. Scheinbeim, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1291–1295 (2000)

    Article  Google Scholar 

  13. A.C. Jayasuriya, J.I. Scheinbeim, Appl. Surf. Sci. 175–176, 386–390 (2001)

    Article  Google Scholar 

  14. A.C. Jayasuriya, A. Schirokauer, J.I. Scheinbeim, J. Polym. Sci., Part B, Polym. Lett. 39, 2793–2799 (2001)

    Article  ADS  Google Scholar 

  15. V.V. Kochervinskii, I.A. Malyshkina, G.V. Markin, N.D. Gavrilova, N.P. Bessonova, J. Appl. Polym. Sci. 105, 1101–1117 (2007)

    Article  Google Scholar 

  16. M. Latour, K. Anis, IEEE Trans. Electr. Ins. 28, 111–114 (1993)

    Article  Google Scholar 

  17. M. Wegener, W. Künstler, R. Gerhard-Multhaupt, Integr. Ferroelectr. 60, 111–116 (2004)

    Article  Google Scholar 

  18. P. Frübing, F. Wang, C. Günter, R. Gerhard, M. Wegener, M. Jaunich, W. Stark, in Proc. 2010 International Conference on Solid Dielectrics (ICSD 2010), IEEE Catalog Number CFP10ICS-PRT (2010), pp. 414–417

    Google Scholar 

  19. M. Wegener, W. Künstler, K. Richter, R. Gerhard-Multhaupt, J. Appl. Phys. 92, 7442–7447 (2002)

    Article  ADS  Google Scholar 

  20. W. Künstler, M. Wegener, M. Seiß, R. Gerhard-Multhaupt, Appl. Phys. A 73, 641–645 (2001)

    Article  ADS  Google Scholar 

  21. T.A. Dargaville, M. Celina, P.M. Chaplya, J. Polym. Sci., Part B, Polym. Lett. 43, 1310–1320 (2005)

    ADS  Google Scholar 

  22. F. Wang, P. Frübing, W. Wirges, R. Gerhard, M. Wegener, IEEE Trans. Dielectr. Electr. Insul. 17, 1088–1095 (2010)

    Article  Google Scholar 

  23. Y. Huan, Y. Liu, Y. Yang, Y. Wu, J. Appl. Polym. Sci. 104, 858–862 (2007)

    Article  Google Scholar 

  24. B. El Mohajir, N. Heymans, Polymer 42, 5661–5667 (2001)

    Article  Google Scholar 

  25. R.F. Boyer, J. Polym. Sci., Polym. Symp. 50, 189–242 (1975)

    Google Scholar 

  26. J.B. Enns, R. Simha, J. Macromol. Sci. B 13, 11–24 (1977)

    Article  Google Scholar 

  27. C. Leonard, J.L. Halary, L. Monnerie, F. Micheron, Polym. Bull. 11, 195–202 (1984)

    Article  Google Scholar 

  28. K. Loufakis, B. Wunderlich, Macromolecules 20, 2474–2478 (1987)

    Article  ADS  Google Scholar 

  29. Y. Miyamoto, H. Miyaji, K. Asai, J. Polym. Sci., Polym. Phys. Ed. 18, 597–606 (1980)

    Article  ADS  Google Scholar 

  30. J. Rault, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C 37, 335–387 (1997)

    Google Scholar 

  31. G. Teyssedre, C. Lacabanne, Ferroelectrics 171, 125–144 (1995)

    Article  Google Scholar 

  32. J. Menegotto, L. Ibos, A. Bernès, P. Demont, C. Lacabanne, Ferroelectrics 228, 1–22 (1999)

    Article  Google Scholar 

  33. M. Neidhöfer, F. Beaume, L. Ibos, A. Bernès, C. Lacabanne, Polymer 45, 1679–1688 (2004)

    Article  Google Scholar 

  34. H. Sasabe, S. Saito, M. Asahina, H. Kakutani, J. Polym. Sci., Part A, Gen. Pap. 2(7), 1405–1414 (1969)

    Google Scholar 

  35. J. Mijovic, J.-W. Sy, T.K. Kwei, Macromolecules 30, 3042–3050 (1997)

    Article  ADS  Google Scholar 

  36. R. Gregorio Jr., E.M. Ueno, J. Mater. Sci. 34, 4489–4500 (1999)

    Article  Google Scholar 

  37. T. Wentik Jr., J. Appl. Phys. 32, 1063–1064 (1961)

    Article  ADS  Google Scholar 

  38. Y. Ishida, M. Watanabe, K. Yamafuji, Kolloid-Z. Z. Polym. 200, 48 (1964)

    Article  Google Scholar 

  39. A. Peterlin, J.D. Holbrook, Kolloid-Z. Z. Polym. 203, 68–69 (1965)

    Article  Google Scholar 

  40. A. Peterlin, J. (Holbrook) Elwell, J. Mater. Sci. 2, 1–6 (1967)

    Article  ADS  Google Scholar 

  41. H. Kakutani, J. Polym. Sci., Part A, Gen. Pap. 2(8), 1177–1186 (1970)

    Google Scholar 

  42. T. Mizutani, T. Yamada, M. Ieda, J. Phys. D 14, 1139–1147 (1981)

    Article  ADS  Google Scholar 

  43. T. Yamada, J. Phys. D 15, 289–297 (1982)

    Article  ADS  Google Scholar 

  44. N. Koizumi, S. Yano, K. Tsunashima, Polym. Lett. 7, 59–64 (1969)

    Article  Google Scholar 

  45. S. Yano, J. Polym. Sci., Part A, Gen. Pap. 2(8), 1057–1072 (1970)

    Google Scholar 

  46. K. Nakagawa, Y. Ishida, J. Polym. Sci., Polym. Phys. Ed. 11, 1503–1533 (1973)

    ADS  Google Scholar 

  47. A. Bello, E. Laredo, M. Grimau, Phys. Rev. B 60, 12764–12774 (1999)

    Article  ADS  Google Scholar 

  48. J. Hirschinger, D. Schaefer, H.W. Spiess, A.J. Lovinger, Macromolecules 24, 2428–2433 (1991)

    Article  ADS  Google Scholar 

  49. N. Koizumi, K. Tsunashima, S. Yano, Polym. Lett. 7, 815–820 (1969)

    Article  Google Scholar 

  50. V.V. Kochervinskii, I. Malyshkina, J. Non-Cryst. Solids 356, 564–567 (2010)

    Article  ADS  Google Scholar 

  51. L.E. Cross, Ferroelectrics 151, 305–320 (1994)

    Article  Google Scholar 

  52. Q.M. Zhang, V. Bharti, X. Zhao, Science 280, 2101–2104 (1998)

    Article  ADS  Google Scholar 

  53. C. Ang, Z. Yu, Appl. Phys. Lett. 86, 262903 (2005)

    Article  ADS  Google Scholar 

  54. Y. Lu, J. Claude, L.E. Norena-Franco, Q. Wang, J. Phys. Chem. B 112, 10411-6 (2008)

    Google Scholar 

  55. F. Bauer, E. Fousson, Q.M. Zhang, L.M. Lee, IEEE Trans. Dielectr. Electr. Insul. 11, 293–298 (2004)

    Article  Google Scholar 

  56. R.J. Klein, F. Xia, Q.M. Zhang, J. Appl. Phys. 97, 094105 (2005)

    Article  ADS  Google Scholar 

  57. F. Guan, J. Pan, J. Wang, Q. Wang, L. Zhu, Macromolecules 43, 384–392 (2010)

    Article  ADS  Google Scholar 

  58. E. Ozkazanc, H.Y. Guney, J. Appl. Polym. Sci. 112, 2482–2485 (2009)

    Article  Google Scholar 

  59. G. Teyssedre, A. Bernès, C. Lacabanne, J. Polym. Sci., Part B, Polym. Lett. 31, 2027–2034 (1993)

    ADS  Google Scholar 

  60. G. Teyssedre, M. Grimau, A. Bernès, J.J. Martinez, C. Lacabanne, Polymer 35, 4397–4403 (1994)

    Article  Google Scholar 

  61. M. Latour, K. Anis, R.M. Faria, J. Phys. D 22, 806–808 (1989)

    Article  ADS  Google Scholar 

  62. D. Rollik, S. Bauer, R. Gerhard-Multhaupt, J. Appl. Phys. 85, 3282–3288 (1999)

    Article  ADS  Google Scholar 

  63. V. Sencadas, R. Barbosa, J.F. Mano, S. Lanceros-Mendez, Ferroelectrics 294, 61–71 (2003)

    Article  Google Scholar 

  64. J.F. Mano, V. Sencadas, A. Mello Costa, S. Lanceros-Mendez, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 370, 336–340 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Matthias Jaunich and Wolfgang Stark (Federal Institute for Materials Research and Testing, Berlin, Germany) for performing the DMA measurements and to Monika Ehlert and Selina Müller for lab assistance. F. Wang thanks the Deutsche Forschungsgemeinschaft for providing a research fellowship (Ref. Nr. WA 2688/1-1). The authors thank the European Union for partial financial support of equipment within the European Fund for Regional Development (EFRD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Frübing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frübing, P., Wang, F. & Wegener, M. Relaxation processes and structural transitions in stretched films of polyvinylidene fluoride and its copolymer with hexafluoropropylene. Appl. Phys. A 107, 603–611 (2012). https://doi.org/10.1007/s00339-012-6838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6838-1

Keywords

Navigation