Skip to main content
Log in

Dynamic performance of dielectric elastomers utilized as acoustic actuators

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the frequency dependent behavior of dielectric elastomer actuators (DEA). The introduced smart material actuators consist of 3M’s elastomer VHB4905 (9469) and a compliant, sputtered copper electrode on each side. The presented experiments on these compounds contain the active tuning of their resonance frequency and their application as acoustic actuators. We are able to decrease the membranes’ eigenfrequency by 30% with an electrical offset potential. Alternatively, if an alternating signal is applied, sound pressure levels up to 130 dB in an enclosed volume of 28 ccm are achieved. In order to verify the results, a numerical simulation is introduced incorporating the two physical fields involved: electrical and mechanical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity: Evolution and Future of a Technology, Springer Series in Materials Science (Springer, Berlin, 2008)

    Google Scholar 

  2. T.S. Albach, P. Horn, A. Sutor, R. Lerch, Sound Generation Using a Magnetostrictive Microactuator. J. Appl. Phys. 109(7), 3 (2011)

    Google Scholar 

  3. F. Wolf, A. Sutor, S.J. Rupitsch, R. Lerch, Modeling and measurement of creep- and rate-dependent hysteresis in ferroelectric actuators. Sens. Actuators A, Phys. 172(1), 245–252 (2011)

    Article  Google Scholar 

  4. G.M. Sessler, M.G. Broadhurst, R. Gerhard-Multhaupt, Electrets, vol. 1, Laplacian Press Series on Electrostatics (Laplacian Press, Morgan Hill, 2000)

    Google Scholar 

  5. S. Bauer, R. Gerhard-Multhaupt, G.M. Sessler, Ferroelectrets: Soft Electroactive Foams for Transducers, Physics Today (2004)

  6. S.J. Rupitsch, R. Lerch, J. Strobel, A. Streicher, Ultrasound transducers based on ferroelectret materials. IEEE Trans. Dielectr. Electr. Insul. 18(1), 69–80 (2011)

    Article  Google Scholar 

  7. G.C. Montanari, D. Fabiani, F. Ciani, A. Motori, M. Paajanen, R. Gerhard-Multhaupt, M. Wegener, Charging properties and time-temperature stability of innovative polymeric cellular ferroelectrets. IEEE Trans. Dielectr. Electr. Insul. 14(1), 238–248 (2007)

    Article  Google Scholar 

  8. M. Wissler, E. Mazza, Electromechanical coupling in dielectric elastomer actuators. Sens. Actuators A, Phys. 138(2), 384–393 (2007)

    Article  Google Scholar 

  9. R. Kornbluh, R. Pelrine, Q. Pei, Dielectric elastomer produces strain of 380% (2000). http://ndeaa.jpl.nasa.gov/nasa-nde/newsltr/WW-EAP_Newsletter2-2.pdf, p. 10

  10. G. Kofod, Dielectric elastomer actuators. Ph.D. thesis, Technical University of Denmark (2001)

  11. W.C. Röntgen, Ueber die durch Electricität bewirkten Form- und Volumenänderungen von dielectrischen Körpern. Ann. Phys. Chem. 11, 771–786 (1880)

    Article  Google Scholar 

  12. M. Zhenyi, J.I. Scheinbeim, J.W. Lee, B.A. Newman, High field electrostrictive response of polymers. J. Polym. Sci., Part B, Polym. Phys. 32(16), 2721–2731 (1994)

    Article  ADS  Google Scholar 

  13. C. Keplinger, T. Li, R. Baumgartner, Z. Suo, S. Bauer, Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8, 285–288 (2012)

    Article  ADS  Google Scholar 

  14. K.J. Kim, S. Tadokoro, Electroactive Polymers for Robotic Applications (Springer, London, 2007)

    Book  Google Scholar 

  15. R. Pei, Q. Pelrine, R. Kornbluh, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100. Science 287, 836–839 (2000)

    Article  ADS  Google Scholar 

  16. M. Matysek, Dielektrische Elastomeraktoren in Multilayer-Technologie für taktile Displays. Ph.D. thesis, Technische Universität Darmstadt (2009)

  17. M. Molberg, Y. Leterrier, C.J.G. Plummer, C. Walder, C. Löwe, D.M. Opris, F.A. Nüesch, S. Bauer, J.E. Mnson, Frequency dependent dielectric and mechanical behavior of elastomers for actuator applications. Journal of Applied Physics 106(5), 2009

  18. R. Joseph, J. Eckerle, J. Kornbluh, R. Heydt, R. Pelrine, Acoustical performance of an electrostrictive polymer film loudspeaker. J. Acoust. Soc. Am. 107, 833–839 (2000)

    Article  ADS  Google Scholar 

  19. J. Eckerle, R. Pelrine, R. Heydt, J. Kornbluh, Sound radiation properties of dielectric elastomer electroactive polymer loudspeakers, in Proceedings of SPIE 6168 (2006), p. 61681M

    Google Scholar 

  20. S. Niklaus, M. Dadras, M. Shea, H. Dubois, P. Rosset, Voltage control of the resonance frequency of dielectric electroactive polymer (deap) membranes. J. Microelectromech. 1072–1081 (2008)

  21. G. Kofod, P. Sommer-Larsen, R. Kornbluh, R. Pelrine, Actuation response of polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14(12), 787–793 (2003)

    Article  Google Scholar 

  22. W. Ma, L.E. Cross, An experimental investigation of electromechanical response in a dielectric acrylic elastomer. Appl. Phys. A, Mater. Sci. Process. 78(8), 1201–1204 (2004)

    Article  ADS  Google Scholar 

  23. C. Jean-Mistral, A. Sylvestre, S. Basrour, J.-J. Chaillout, Dielectric properties of polyacrylate thick films used in sensors and actuators. Smart Mater. Struct. 19(7), 075019 (2010)

    Article  ADS  Google Scholar 

  24. D.M. Mattox, The Foundations of Vacuum Coating Technology (William Andrew Pub., 2003)

  25. F. Ziegler, Mechanics of Solids and Fluids, 2nd edn. (Springer, New York, 1998)

    MATH  Google Scholar 

  26. D. Elata, V. Leus, A. Hirshberg, O. Salomon, M. Naftali, A novel tilting micromirror with a triangular waveform resonance response and an adjustable resonance frequency for raster scanning applications, in Solid-State Sensors, Actuators and Microsystems Conference, 2007, TRANSDUCERS 2007, International, pp. 1509–1512, June 2007

    Chapter  Google Scholar 

  27. P. Areias, K. Matouš, Finite element formulation for modeling nonlinear viscoelastic elastomers. Comput. Methods Appl. Mech. Eng. 197(51–52), 4702–4717 (2008)

    Article  ADS  MATH  Google Scholar 

  28. D.K. Vu, P. Steinmann, G. Possart, Numerical modelling of non-linear electroelasticity. Int. J. Numer. Methods Eng. 70(6), 685–704 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. D.K. Vu, P. Steinmann, A 2-D coupled BEM-FEM simulation of electro-elastostatics at large strain. Comput. Methods Appl. Mech. Eng. 199(17–20), 1124–1133 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. X. Zhao, Z. Suo, Method to analyze programmable deformation of dielectric elastomer layers. Appl. Phys. Lett. 93(25), 25190 (2008)

    Google Scholar 

  31. B. Brien, T. McKay, E. Calius, S. Xie, I.A. Anderson, Finite element modelling of dielectric elastomer minimum energy structures. Appl. Phys. A, Mater. Sci. Process. 94, 507–514 (2009)

    Article  ADS  Google Scholar 

  32. R.W. Ogden, Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressile rubberlike solids, in Proceedings of the Royal Society of London A (1972)

    Google Scholar 

  33. M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators (Springer, Berlin, Heidelberg, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hochradel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochradel, K., Rupitsch, S.J., Sutor, A. et al. Dynamic performance of dielectric elastomers utilized as acoustic actuators. Appl. Phys. A 107, 531–538 (2012). https://doi.org/10.1007/s00339-012-6837-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6837-2

Keywords

Navigation