Skip to main content
Log in

Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Composite thin film is highly desirable for the dielectric applications. In order to develop composite thin film, a nanocomposite, in which nanosized CaCu3Ti4O12 (CCTO) particles are used as filler and P(VDF–TrFE) 55/45 mol% copolymer is used as polymer matrix, is investigated. The contents of CCTO in the nanocomposites range from 0% to 50 vol%. The dielectric property of these nanocomposites was characterized at frequencies ranging from 100 Hz to 1 MHz and at temperatures ranging from 200 K to 370 K. A dielectric constant of 62 with a loss of 0.05 was obtained in nanocomposite with 50 vol% CCTO at room temperature at 1 kHz. At the phase transition temperature (∼340 K) of the copolymer, a dielectric constant of 150 with a loss less than 0.1 was obtained in this nanocomposite. It is found that the dielectric loss of the nanocomposites is dominated by the polymer which has a relaxation process. Comparing to composites made using microsized CCTO, the nanocomposites exhibit a much lower dielectric loss and a lower dielectric constant. This indicates that the nanosized CCTO particles have a lower dielectric constant than the microsized CCTO particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)

    Article  Google Scholar 

  2. W. Jillek, W.K.C. Yung, Int. J. Adv. Manuf. Technol. 25, 350–360 (2005)

    Article  Google Scholar 

  3. L. Zhang, Z.-Y. Cheng, J. Adv. Dielectrics 1, 389–406 (2011)

    Article  Google Scholar 

  4. T. Osaka, M. Datta, Energy Storage Systems for Electronics (Gordon & Breach, Amsterdam, 2001)

    Google Scholar 

  5. Q.M. Zhang, H. Li, M. Poh, Z.-Y. Cheng, H. Xu, F. Xia, C. Huang, Nature 419, 284 (2002)

    Article  ADS  Google Scholar 

  6. Y. Bai, Z.-Y. Cheng, V. Bharti, H.S. Xu, Q.M. Zhang, Appl. Phys. Lett. 76, 3804 (2009)

    Article  ADS  Google Scholar 

  7. B. Hilczer, J. Kulek, E. Markiewicz, M. Kosec, B. Malic, J. Non-Cryst. Solids 305, 167 (2002)

    Article  ADS  Google Scholar 

  8. Z.M. Dang, H.P. Xu, H.Y. Wang, Appl. Phys. Lett. 90, 012901 (2007)

    Article  ADS  Google Scholar 

  9. K.C. Li, H. Wang, F. Xiang, W.H. Liu, H.B. Yang, Appl. Phys. Lett. 95, 202904 (2009)

    Article  ADS  Google Scholar 

  10. Z.-Y. Cheng, R.S. Katiyar, X. Yao, A.S. Bhalla, Phys. Rev. B, Condens. Matter 57, 8166 (1998)

    Article  ADS  Google Scholar 

  11. Z.-Y. Cheng, Q.M. Zhang, MRS Bull. 33, 183 (2008)

    Article  Google Scholar 

  12. A. Safari, E.K. Akdogan, Piezoelectric and Acoustic Materials for Transducer Application (Springer, New York, 2008)

    Book  Google Scholar 

  13. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  ADS  Google Scholar 

  14. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  15. M.D. Arbatti, X.B. Shan, Z.-Y. Cheng, Adv. Mater. 19, 1369 (2007)

    Article  Google Scholar 

  16. F. Amaral, C.P.L. Rubinger, F. Henry, L.C. Costa, M.A. Valente, A. Barros-Timmons, J. Non-Cryst. Solids 354, 5321 (2008)

    Article  ADS  Google Scholar 

  17. Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, J.Y. Li, Q. Chen, W.T. Yang, J.B. Bai, Adv. Mater. 21, 2077 (2009)

    Article  Google Scholar 

  18. P. Thomas, K. Dwarakanath, K.B.R. Varma, Synth. Met. 159, 2128 (2009)

    Article  Google Scholar 

  19. F.J. Wang, D.X. Zhou, Y.X. Hu, Phys. Status Solidi A 206, 2632 (2009)

    Article  Google Scholar 

  20. P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Compos. Sci. Technol. 70, 539 (2010)

    Article  Google Scholar 

  21. L. Zhang, X.B. Shan, P.X. Wu, J.L. Song, Z.-Y. Cheng, Ferroelectrics 405, 92 (2010)

    Article  Google Scholar 

  22. Y.P. Shen, A.J. Gu, G.Z. Liang, L. Yuan, Composites, Part A, Appl. Sci. Manuf. 41, 1668–1676 (2010)

    Article  Google Scholar 

  23. P. Thomas, S. Satapathy, K. Dwarakanath, K.B.R. Varma, Express Polym. Lett. 4, 632 (2010)

    Article  Google Scholar 

  24. W.H. Yang, S.H. Yu, R. Sun, R.X. Du, Acta Mater. 59, 5593–5602 (2011)

    Article  Google Scholar 

  25. X.B. Shan, Ph.D. thesis, Auburn University (2010)

  26. Z.-Y. Cheng, Q.M. Zhang, F.B. Bateman, J. Appl. Phys. 92, 6749 (2002)

    Article  ADS  Google Scholar 

  27. X.B. Shan, L. Zhang, Z.-Y. Cheng, Mater. Res. Soc. Symp. Proc. 1312, 25 (2011)

    Article  Google Scholar 

  28. H. Kniepkamp, W.W. Heywang, Z. Angew. Phys. 6, 385 (1954)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-Y. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Shan, X., Wu, P. et al. Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites. Appl. Phys. A 107, 597–602 (2012). https://doi.org/10.1007/s00339-012-6836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6836-3

Keywords

Navigation