Skip to main content
Log in

Pressure dependence of space charge deposition in piezoelectric polymer foams: simulations and experimental verification

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The piezoelectric activity of PQ-50 cellular polypropylene (PP) foam (an example of a so-called ferroelectret) is measured after repeated charging in a nitrogen atmosphere at a range of pressures between 61 and 381 kPa. The results are compared against simulations using a multilayer electromechanical model based on Townsend’s model of Paschen breakdown and a realistic distribution of void heights determined from scanning electron micrographs. The modeled piezoelectric coefficients versus pressure are in good agreement with experimental data when adjusted Paschen coefficients are used, indicating that the Paschen curve for electric breakdown in gases needs to be modified for dielectric barrier discharges in microcavities. The highest d 33 coefficients were achieved for pressures above 251 kPa. For previously uncharged PP foam, the model predicts an optimal charging pressure of 186 kPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 9, 850–859 (2002)

    Article  Google Scholar 

  2. S. Bauer, R. Gerhard-Multhaupt, G.M. Sessler, Phys. Today 57, 37–42 (2004)

    Article  Google Scholar 

  3. X. Zhang, J. Hillenbrand, G.M. Sessler, Appl. Phys. Lett. 85, 1226 (2004)

    Article  ADS  Google Scholar 

  4. X. Qiu, J. Appl. Phys. 108, 011101 (2010)

    Article  ADS  Google Scholar 

  5. A. Mellinger, M. Wegener, W. Wirges, R. Gerhard-Multhaupt, Appl. Phys. Lett. 79, 1852–1854 (2001)

    Article  ADS  Google Scholar 

  6. X. Zhang, X. Wang, J. Huang, Z. Xia, J. Mater. Sci. 44, 2459–2465 (2009)

    Article  ADS  Google Scholar 

  7. O. Voronina, M. Wegener, W. Wirges, R. Gerhard, L. Zirkel, H. Münstedt, Appl. Phys. A, Mater. Sci. 90, 615–618 (2008)

    Article  ADS  Google Scholar 

  8. P. Fang, X. Qiu, W. Wirges, R. Gerhard, L. Zirkel, IEEE Trans. Dielectr. Electr. Insul. 17, 1079–1087 (2010)

    Article  Google Scholar 

  9. S. Zhukov, H. von Seggern, J. Appl. Phys. 102, 044109 (2007)

    Article  ADS  Google Scholar 

  10. R.A. Pisani Altafim, X. Qiu, W. Wirges, R. Gerhard-Multhaupt, R.A. Corrêa Altafim, H.C. Basso, W. Jenninger, J. Wagner, J. Appl. Phys. 106, 014106 (2009)

    Article  ADS  Google Scholar 

  11. X. Zhang, G. Cao, Z. Sun, Z. Xia, J. Appl. Phys. 108, 064113 (2010)

    Article  ADS  Google Scholar 

  12. G.M. Sessler, J. Hillenbrand, Appl. Phys. Lett. 75, 3405–3407 (1999)

    Article  ADS  Google Scholar 

  13. J. Hillenbrand, G. Sessler, IEEE Trans. Dielectr. Electr. Insul. 7, 537–542 (2000)

    Article  Google Scholar 

  14. M. Paajanen, H. Välimäki, J. Lekkala, in Proc. 10th International Symposium on Electrets, Delphi, Greece, 22–24 September 1999 (IEEE Service Center, Piscataway, 1999), pp. 735–738

    Google Scholar 

  15. M. Paajanen, J. Lekkala, H. Välimäki, IEEE Trans. Dielectr. Electr. Insul. 8, 629–636 (2001)

    Article  Google Scholar 

  16. X. Qiu, A. Mellinger, M. Wegener, W. Wirges, R. Gerhard, J. Appl. Phys. 101, 104112 (2007)

    Article  ADS  Google Scholar 

  17. S. Zhukov, S. Fedosov, H. von Seggern, J. Phys. D, Appl. Phys. 44, 105501 (2011)

    Article  ADS  Google Scholar 

  18. P. Zhang, Z. Xia, X. Qiu, F. Wang, X.Y. Wu, in Proc. 12th International Symposium on Electrets, Salvador, Brazil, 11–14 September 2005 (IEEE Service Center, Piscataway, 2005), pp. 39–42

    Chapter  Google Scholar 

  19. A. Mellinger, O. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 8, 629–636 (2011)

    Google Scholar 

  20. E.M. Bazelyan, Y.P. Raizer, Spark Discharge (CRC Press, Boca Raton, 1998)

    Google Scholar 

  21. M. Paajanen, H. Minkkinen, J. Raukola, in IEEE 11th International Symposium on Electrets (IEEE Service Center, Piscataway, 2002), pp. 191–194

    Chapter  Google Scholar 

  22. M. Wegener, W. Wirges, J. Fohlmeister, B. Tiersch, R. Gerhard-Multhaupt, J. Phys. D, Appl. Phys. 37, 623–627 (2004)

    Article  ADS  Google Scholar 

  23. K.V. Kozlov, H.-E. Wagner, R. Brandenburg, P. Michel, J. Appl. Phys. D 34, 3164–3176 (2001)

    Article  ADS  Google Scholar 

  24. A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 10, 842–861 (2003)

    Article  Google Scholar 

  25. Y. Wan, L. Xie, X. Zhang, Z. Zhong, Appl. Phys. Lett. 98, 122902 (2011)

    Article  ADS  Google Scholar 

  26. X. Qiu, A. Mellinger, R. Gerhard, Appl. Phys. Lett. 92, 052901 (2008)

    Article  ADS  Google Scholar 

  27. S. Harris, O. Mellinger, A. Mellinger, in Annual Report, Conference on Electrical Insulation and Dielectric Phenomena, West Lafayette, IN, October 2010.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Philip Oshel, Department of Biology, Central Michigan University for taking the SEM images and X. Qiu, University of Potsdam, for providing the PQ-50 material. This work was supported by CMU’s Office of Research and Sponsored Programs, and the Advanced Materials Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Mellinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, S., Mellinger, A. Pressure dependence of space charge deposition in piezoelectric polymer foams: simulations and experimental verification. Appl. Phys. A 107, 553–558 (2012). https://doi.org/10.1007/s00339-012-6835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6835-4

Keywords

Navigation