Skip to main content

Advertisement

Log in

Dielectric elastomer and ferroelectret films combined in a single device: how do they reinforce each other?

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dielectric elastomers (DE) are soft polymer materials exhibiting large deformations under electrostatic stress. When a prestretched elastomer is stuck to a flat plastic frame, a complex structure that can be used as an actuator (DEA) is formed due to self-organization and energy minimization. Here, such a DEA was equipped with a ferroelectret film. Ferroelectrets are internally charged polymer foams or void-containing polymer-film systems combining large piezoelectricity with mechanical flexibility and elastic compliance. In their dielectric spectra, ferroelectrets show piezoelectric resonances that can be used to analyze their electromechanical properties. The antiresonance frequencies (f p ) of ferroelectret films not only are directly related to their geometric parameters, but also are sensitive to the boundary conditions during measurement. In this paper, a fluoroethylenepropylene (FEP) ferroelectret film with tubular void channels was glued to a plastic frame prior to the formation of self-organized minimum-energy DEA structure. The dielectric resonance spectrum (DRS) of the ferroelectret film was measured in-situ during the actuation of the DEA under applied voltage. It is found that the antiresonance frequency is a monotropic function of the bending angle of the actuator. Therefore, the actuation of DEAs can be used to modulate the f p of ferroelectrets, while the f p can also be taken for in-situ diagnosis and for precise control of the actuation of the DEA. Combination of DEAs and ferroelectrets brings a number of possibilities for application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Bauer, R. Gerhard-Multhaupt, G.M. Sessler, Phys. Today 57(2), 37 (2004)

    Article  Google Scholar 

  2. R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 9, 850 (2002)

    Article  Google Scholar 

  3. X. Qiu, R. Gerhard, A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 18, 34 (2011)

    Article  Google Scholar 

  4. K. Kirjavainen, Electromechanical film and procedure for manufacturing same, US Patent No. 4654546 (1987)

  5. A. Mellinger, M. Wegener, W. Wirges, R. Reddy Mallepally, R. Gerhard-Multhaupt, Ferroelectrics 331, 189 (2006)

    Article  Google Scholar 

  6. R.A.P. Altafim, X. Qiu, W. Wirges, R. Gerhard, R.A.C. Altafim, H.C. Basso, W. Jenninger, J. Wagner, J. Appl. Phys. 106, 014106 (2009)

    Article  ADS  Google Scholar 

  7. F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen (eds.), Dielectric elastomers as electromechanical transducers (Elsevier, Amsterdam, 2008)

    Google Scholar 

  8. F. Carpi, S. Bauer, D. De Rossi, Science 330, 1759 (2010)

    Article  ADS  Google Scholar 

  9. P. Brochu, Q. Pei, Macromol. Rapid Commun. 31, 10 (2010) and references therein

    Article  Google Scholar 

  10. C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, Proc. Natl. Acad. Sci. USA 107, 4505 (2010)

    Article  ADS  Google Scholar 

  11. L.A. Toth, A.A. Goldenberg, Proc. SPIE 4695, 323 (2002)

    Article  ADS  Google Scholar 

  12. C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, Appl. Phys. Lett. 92, 192903 (2008)

    Article  ADS  Google Scholar 

  13. T.A. Gisby, S.Q. Xie, E.P. Calius, I.A. Anderson, Proc. SPIE 7642, 764213 (2010)

    Article  Google Scholar 

  14. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, Science 287, 836 (2000)

    Article  ADS  Google Scholar 

  15. G. Kofod, J. Phys. D, Appl. Phys. 41, 215405 (2008)

    Article  ADS  Google Scholar 

  16. G. Kofod, M. Paajanen, S. Bauer, Appl. Phys. A, Mater. Sci. Process. 85, 141 (2006)

    Article  ADS  Google Scholar 

  17. B. O’Brien, T. McKay, E. Calius, S. Xie, I. Anderson, Appl. Phys. A, Mater. Sci. Process. 94, 507 (2009)

    Article  ADS  Google Scholar 

  18. G. Kofod, W. Wirges, M. Paajanen, S. Bauer, Appl. Phys. Lett. 90, 081916 (2007)

    Article  ADS  Google Scholar 

  19. G.S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, S. Bauer, J. Hillenbrand, R. Kressmann, G.M. Sessler, M. Paajanen, J. Lekkala, Appl. Phys. Lett. 77, 3827 (2000)

    Article  ADS  Google Scholar 

  20. A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 10, 842 (2003)

    Article  Google Scholar 

  21. S. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Mr. Matthias Kollosche and Mr. Nicolas Marroquin Jacobs (both University of Potsdam) for stimulating discussions and to the European Union for cofounding some of the equipment used in their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunlin Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirges, W., Raabe, S. & Qiu, X. Dielectric elastomer and ferroelectret films combined in a single device: how do they reinforce each other?. Appl. Phys. A 107, 583–588 (2012). https://doi.org/10.1007/s00339-012-6833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6833-6

Keywords

Navigation