Skip to main content
Log in

AC surface photovoltage of indium phosphide nanowire networks

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Surface photovoltage is used to study the dynamics of photogenerated carriers which are transported through a highly interconnected three-dimensional network of indium phosphide nanowires. Through the nanowire network charge transport is possible over distances far in excess of the nanowire lengths. Surface photovoltage was measured within a region 10.5–14.5 mm from the focus of the illumination, which was chopped at a range of frequencies from 15 Hz to 30 kHz. Carrier dynamics were modeled by approximating the nanowire network as a thin film, then fitted to experiment suggesting diffusion of electrons and holes at approximately 75% of the bulk value in InP but with significantly reduced built-in fields, presumably due to screening by nanowire surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Meyyappan, M.K. Sunkara, Inorganic Nanowires: Applications, Properties, and Characterization (CRC Press, Boca Raton, 2009)

    Google Scholar 

  2. A.J. Lohn, T. Onishi, N.P. Kobayashi, Nanotechnology 21, 355702 (2010)

    Article  Google Scholar 

  3. A.J. Lohn, N.P. Kobayashi, in Proc. IEEE Nanotechnology, Materials and Devices Conference (2010), p. 169

    Google Scholar 

  4. N. Kobayashi, A. Lohn, “Fabrication processes and structures of thermoelectric power generation devices”, in Disclosure and Record of Invention at University of California Santa Cruz, Case No. SC 2011-189-1

  5. W.H. Brattain, J. Bardeen, Bell Syst. Tech. J. 32, 1 (1953)

    Google Scholar 

  6. T.S. Moss, J. Electron. Control 1, 126–138 (1955)

    Article  Google Scholar 

  7. E.O. Johnson, J. Appl. Phys. 28, 1349–1353 (1957)

    Article  ADS  Google Scholar 

  8. A.M. Goodman, L.A. Goodman, H.F. Gossenberger, RCA Rev. 44, 326–341 (1983)

    Google Scholar 

  9. S.R. Dhariwal, B.M. Deoraj, Semicond. Sci. Technol. 8, 372–376 (1993)

    Article  ADS  Google Scholar 

  10. L. Kronik, Y. Shapira, Surf. Sci. Rep. 37, 1–206 (1999)

    Article  ADS  Google Scholar 

  11. D.K. Schroder, Meas. Sci. Technol. 12, R16–R31 (2001)

    Article  ADS  Google Scholar 

  12. D. Cavalcoli, A. Cavallini, Phys. Status Solidi C 7, 1293–1300 (2010)

    Article  ADS  Google Scholar 

  13. A. Armstrong, Q. Li, Y. Lin, A.A. Talin, G.T. Wang, Appl. Phys. Lett. 96, 163106 (2010)

    Article  ADS  Google Scholar 

  14. V. Donchev, T.S. Ivanov, T. Angelova, A. Cros, A. Cantarero, N. Shtinkov, K. Borisov, D. Fuster, Y. Gonzalez, L. Gonzalez, J. Phys. Conf. Ser. 210, 012041 (2010)

    Article  ADS  Google Scholar 

  15. S. Thunich, L. Prechtel, D. Spirkoska, G. Abstreiter, A. Fontcuberta i Morral, A.W. Holleitner, Appl. Phys. Lett. 95, 083111 (2009)

    Article  ADS  Google Scholar 

  16. A.J. Lohn, X. Li, N.P. Kobayashi, J. Cryst. Growth 315, 157–159 (2011)

    Article  ADS  Google Scholar 

  17. A. Hunt, R. Ewing, Percolation Theory for Flow in Porous Media, Lect. Notes Phys., vol. 771 (Springer, Berlin, 2009)

    MATH  Google Scholar 

  18. T. Clarysse, A. Moussa, T. Zangerle, F. Schaus, W. Vandervorst, V. Faifer, M. Current, J. Vac. Sci. Technol., B Microelectron. Nanometer Struct. Process. Meas. Phenom. 26, 420 (2008)

    Article  ADS  Google Scholar 

  19. F. Korsos, K. Kis-Szabo, E. Don, A. Pap, T. Pavelka, C. Laviron, M. Pfeffer, AIP Conf. Proc. 1066, 113–116 (2008)

    Article  ADS  Google Scholar 

  20. V.N. Faifer, M.I. Current, D.K. Schroder, Appl. Phys. Lett. 89, 151123 (2006)

    Article  ADS  Google Scholar 

  21. M. Tallian, A. Pap, D. Kosztka, T. Pavelka, AIP Conf. Proc. 1321, 444–447 (2011)

    Article  ADS  Google Scholar 

  22. A. Bauer, M. Prietsch, S. Molodtsov, C. Laubschat, G. Kaindl, Phys. Rev. B 44, 4002–4005 (1991)

    Article  ADS  Google Scholar 

  23. M. Leibovitch, L. Kronik, E. Fefer, Y. Shapira, Phys. Rev. B 50, 1739–1745 (1994)

    Article  ADS  Google Scholar 

  24. D. Marinkskiy, J. Lagowski, M. Wilson, A. Savtchouk, L. Jastrzebski, D. DeBusk, Mater. Res. Soc. Symp. Proc. 591, 225–230 (2000)

    Article  Google Scholar 

  25. C.-L. Chiang, S. Wagner, IEEE Trans. Electron Devices 32, 1722 (1985)

    Article  Google Scholar 

  26. D.R. Frankl, Surf. Sci. 3, 101 (1965)

    Article  ADS  Google Scholar 

  27. L. Kronik, Y. Shapira, Surf. Interface Anal. 31, 954–965 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ferenc Korsos at Semilab USA LLC (Billerica, MA) for his contribution of surface photovoltage measurements. The authors are also grateful to Bio-Info-Nano R&D Institute (Moffett Field, California), University Affiliated Research Center (UARC, Moffett Field, California), Advanced Studies Laboratories (ASL, Moffett Field California), NASA Ames Research Center and Intelligent Infrastructures Laboratory at Hewlett-Packard Laboratories (Palo Alto, California) for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Lohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohn, A.J., Kobayashi, N.P. AC surface photovoltage of indium phosphide nanowire networks. Appl. Phys. A 107, 647–651 (2012). https://doi.org/10.1007/s00339-012-6810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6810-0

Keywords

Navigation