Skip to main content

Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing

Abstract

In holographic femtosecond laser processing, diffractive parallel pulses are distorted by phase discontinuities and mutual interference between the neighborhoods in the reconstructed image of a Fourier computer-generated hologram when the interval is smaller than the beam diameter. We investigated holographic fabrication on a glass surface using parallel pulses with different intervals. We found the closest parallel pulses with sufficient separation to avoid mutual interference in holographic femtosecond laser processing. The minimum interval was 2.8 times larger than the diffracted beam diameter. The experimental results were also supported by a computer simulation. Our findings will be very useful in the design of holographic laser processing systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. D. Du, X. Liu, G. Korn, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994)

    Article  ADS  Google Scholar 

  2. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, M. Obara, Appl. Phys. Lett. 65, 1850 (1994)

    Article  ADS  Google Scholar 

  3. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  4. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  5. E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Mazur, Opt. Lett. 21, 2023 (1996)

    Article  ADS  Google Scholar 

  6. K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, Appl. Phys. B 71, 119 (2000)

    Article  ADS  Google Scholar 

  7. T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, Appl. Phys. Lett. 79, 725 (2001)

    Article  ADS  Google Scholar 

  8. Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, Y. Jiang, Appl. Phys. Lett. 80, 1508 (2002)

    Article  ADS  Google Scholar 

  9. K. Venkatakrishnan, N.R. Sivakumar, C.W. Hee, B. Tan, W.L. Liang, G.K. Gan, Appl. Phys. A 77, 959 (2003)

    Article  ADS  Google Scholar 

  10. Y. Nakata, T. Okada, M. Maeda, Jpn. J. Appl. Phys. 42, L1452 (2003)

    Article  ADS  Google Scholar 

  11. S. Matsuo, S. Juodkazis, H. Misawa, Appl. Phys. A 80, 683 (2005)

    Article  ADS  Google Scholar 

  12. J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, S. Kawata, Appl. Phys. Lett. 86, 044102 (2005)

    Article  ADS  Google Scholar 

  13. J. Amako, K. Nagasaka, N. Kazuhiro, Opt. Lett. 27, 969 (2002)

    Article  ADS  Google Scholar 

  14. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, K. Hirao, Opt. Express 12, 1908 (2004)

    Article  ADS  Google Scholar 

  15. Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, Appl. Phys. Lett. 87, 031101 (2005)

    Article  ADS  Google Scholar 

  16. N. Sanner, N. Huot, E. Audouard, C. Larat, J.P. Huignard, B. Loiseaux, Opt. Lett. 30, 1479 (2005)

    Article  ADS  Google Scholar 

  17. S. Hasegawa, Y. Hayasaki, N. Nishida, Opt. Lett. 31, 1705 (2006)

    Article  ADS  Google Scholar 

  18. G.J. Lee, Y.P. Lee, H. Cheong, C.S. Yoon, C.H. Oh, E.K. Kim, Y.-D. Son, J. Jang, J. Korean Phys. Soc. 48, 1268 (2006)

    Google Scholar 

  19. S. Hasegawa, Y. Hayasaki, Opt. Rev. 14, 208 (2007)

    Article  Google Scholar 

  20. H. Takahashi, S. Hasegawa, Y. Hayasaki, Appl. Opt. 46, 5917 (2007)

    Article  ADS  Google Scholar 

  21. K. Chaen, H. Takahashi, S. Hasegawa, Y. Hayasaki, Opt. Commun. 280, 165 (2007)

    Article  ADS  Google Scholar 

  22. M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, Appl. Phys. Lett. 93, 041116 (2008)

    Article  ADS  Google Scholar 

  23. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S.P. Edwardson, M. Padgett, G. Dearden, K.G. Watkins, Appl. Surf. Sci. 255, 2284 (2008)

    Article  ADS  Google Scholar 

  24. S. Hasegawa, Y. Hayasaki, Opt. Lett. 34, 22 (2009)

    Article  Google Scholar 

  25. S. Hasegawa, Y. Hayasaki, Jpn. J. Appl. Phys. 48, 09LE03 (2009)

    Article  Google Scholar 

  26. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, K. Watkins, Appl. Surf. Sci. 255, 6582 (2009)

    Article  ADS  Google Scholar 

  27. G. Mínguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, P. Andrés, Opt. Lett. 31, 2631 (2006)

    Article  ADS  Google Scholar 

  28. G. Mínguez-Vega, E. Tajahuerce, M. Fernández-Alonso, V. Climent, J. Lancis, J. Caraquitena, P. Andrés, Opt. Express 15, 278 (2007)

    Article  ADS  Google Scholar 

  29. L. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, P. Andrés, Appl. Phys. Lett. 94, 011104 (2009)

    Article  ADS  Google Scholar 

  30. G. Zhu, J. van Howe, M. Durst, W. Zipfel, C. Xu, Opt. Express 13, 2153 (2005)

    Article  ADS  Google Scholar 

  31. D. Oron, E. Tal, Y. Silberberg, Opt. Express 13, 1468 (2005)

    Article  ADS  Google Scholar 

  32. E. Tal, D. Oron, Y. Silberberg, Opt. Lett. 30, 1686 (2005)

    Article  ADS  Google Scholar 

  33. D. Oron, Y. Silberberg, Opt. Express 13, 9903 (2005)

    Article  ADS  Google Scholar 

  34. M.E. Durst, G. Zhu, C. Xu, Opt. Express 14, 12243 (2006)

    Article  ADS  Google Scholar 

  35. K. Kimura, S. Hasegawa, Y. Hayasaki, Opt. Lett. 35, 139 (2010)

    Article  Google Scholar 

  36. L. Kelemen, S. Valkai, P. Ormos, Opt. Express 15, 14488 (2007)

    Article  ADS  Google Scholar 

  37. H. Takahashi, S. Hasegawa, A. Takita, Y. Hayasaki, Opt. Express 16, 16592 (2008)

    Article  Google Scholar 

  38. N.J. Jenness, R.T. Hill, A. Hucknall, A. Chilkoti, R.L. Clark, Opt. Express 18, 11754 (2010)

    Article  ADS  Google Scholar 

  39. K. Obata, J. Koch, U. Hinze, B.N. Chichkov, Opt. Express 18, 17193 (2010)

    Article  ADS  Google Scholar 

  40. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, K. Hirao, Jpn. J. Appl. Phys. 48, 126507 (2009)

    Article  ADS  Google Scholar 

  41. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, K. Hirao, Opt. Express 18, 12136 (2010)

    Article  ADS  Google Scholar 

  42. D. Liu, Z. Kuang, W. Perrie, P.J. Scully, A. Baum, S.P. Edwardson, E. Fearon, G. Dearden, K.G. Watkins, Appl. Phys. B 101, 817 (2010)

    Article  ADS  Google Scholar 

  43. H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, Opt. Lett. 36, 1176 (2011)

    Article  ADS  Google Scholar 

  44. M. Antkowiak, M.L. Torres-Mapa, F. Gunn-Moore, K. Dholakia, J. Biophoton. 3, 696 (2010)

    Article  Google Scholar 

  45. J. Bengtsson, Appl. Opt. 33, 6879 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Hayasaki.

Appendix

Appendix

The computer simulation for CGH reconstruction was performed as follows. The CGH was optimized by the ORA method [45]. The CGH was a Fourier hologram, and thus, the reconstruction calculation was performed with the fast Fourier transformation (FFT). The FFT calculation was performed on a graphic processing unit (GPU; GeForce GTX480) using the CUDA development toolkit (Ver. 4.0) produced by NVIDIA Corporation and the CUFFT library. All values were represented by floating-point data types because of the fast calculation. The computation region was 7168 ×7168 pixels, which was sufficiently large to prevent superposition between diffraction light from the CGH and undesired diffraction light derived from the periodic boundary conditions of the FFT. The CGH had 512 ×512 pixels, and the are outside of the CGH had phase values of zero. The pupil was located to coincide with the experimental setup shown in Fig. 2. The illumination inside the pupil and on the outside was represented by amplitudes of 1.0 and 0.0, respectively. The light source had a single wavelength of 800 nm, which was the only difference from the experimental conditions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hayasaki, Y., Nishitani, M., Takahashi, H. et al. Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing. Appl. Phys. A 107, 357–362 (2012). https://doi.org/10.1007/s00339-012-6801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6801-1

Keywords

  • Femtosecond Laser
  • Objective Lens
  • Laser Processing
  • Mutual Interference
  • Focal Spot Diameter