Advertisement

Applied Physics A

, Volume 107, Issue 2, pp 401–410 | Cite as

A twice liquid arc discharge approach for synthesis of visible-light-active nanocrystalline Ag:ZnO photocatalyst

  • Ali Akbar AshkarranEmail author
Article

Abstract

Ag:ZnO hybrid nanostructures were successfully prepared by a twice arc discharge method in liquid. The visible light photocatalytic activities were successfully demonstrated for the degradation of Rhodamine B (Rh. B), Methyl orange (MO), and Methylene blue (MB) as standard organic compounds under the irradiation of 90 W halogen light for 2 h. The Ag:ZnO nanostructures were characterized by X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible absorption spectroscopy (UV-Vis). The results revealed that the Ag:ZnO nanostructures extended the light absorption spectrum toward the visible region and significantly enhanced the Rh. B photodegradation under visible light irradiation. 3 mM Ag:ZnO nanostructures exhibited highest photocatalytic efficiency. It has been confirmed that the Ag:ZnO nanostructures could be excited by visible light (E<3.3 eV). The significant enhancement in the Ag:ZnO nanostructures photocatalytic activity under visible light irradiation can be ascribed to the effect of physisorbed noble metal Ag by acting as electron traps in ZnO band gap. A mechanism for photocatalytic degradation of organic pollutant over Ag:ZnO photocatalyst was proposed based on our observations.

Keywords

Methylene Blue Photocatalytic Activity Methyl Orange Visible Light Irradiation Zinc Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by Plasma Physics Research Center, Science and Research Branch, Islamic Azad University.

References

  1. 1.
    Z.L. Wang, J. Phys., Condens. Matter 16, R829 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    Z.L. Wang, Appl. Phys. A 88, 7 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    B. Geng, X. Liu, X. Wei, S. Wang, Mater. Lett. 59, 3572 (2005) CrossRefGoogle Scholar
  4. 4.
    S.L. Yang, R.S. Gao, B. Yang, P.L. Niu, R.H. Yu, Appl. Phys. A 99, 9 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    G. Wang, D. Chen, H. Zhang, J.Z. Zhang, J. Li, J. Phys. Chem. C 112, 8850 (2008) CrossRefGoogle Scholar
  6. 6.
    B.S. Kang, Y.W. Heo, L.C. Tien, D.P. Norton, F. Ren, B.P. Gila, S.J. Pearton, Appl. Phys. A 80, 1029 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    J. Mo, Y. Zhang, Q. Xu, J.J. Lamson, R. Zhao, Atmos. Environ. 43, 2229 (2009) CrossRefGoogle Scholar
  8. 8.
    K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, J. Photochem. Photobiol. C 9, 171 (2008) CrossRefGoogle Scholar
  9. 9.
    D. Jung, Solid State Sci. 12, 466 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    C. Shifu, Z. Wei, Z. Sujuan, L. Wei, Chem. Eng. J. 148, 263 (2009) CrossRefGoogle Scholar
  11. 11.
    J. Lu, Q. Zhang, J. Wang, F. Saito, M. Uchida, Powder Technol. 162, 33 (2006) CrossRefGoogle Scholar
  12. 12.
    L.C. Chen, Y.J. Tu, Y.S. Wang, R.S. Kan, C.M. Huang, J. Photochem. Photobiol. A, Chem. 199, 170 (2008) CrossRefGoogle Scholar
  13. 13.
    H.F. Lin, S.C. Liao, S.W. Hung, J. Photochem. Photobiol. A, Chem. 174, 82 (2005) CrossRefGoogle Scholar
  14. 14.
    W. Bin, Z. Yue, M. Jiahua, S. Wenbin, Appl. Phys. A 94, 715 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Lai, M. Meng, Y. Yu, Appl. Catal. B, Environ. 100, 491 (2010) CrossRefGoogle Scholar
  16. 16.
    G. Zhou, J. Deng, Mater. Sci. Semicond. Process. 10, 90 (2007) CrossRefGoogle Scholar
  17. 17.
    C. Karunakaran, V. Rajeswari, P. Gomathisankar, Solid State Sci. 13, 923 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Ashkarran, A. Iraji Zad, M.M. Ahadian, S.A. Mahdavi Ardakani, Nanotechnology 19, 195709 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    A.A. Ashkarran, A. Iraji Zad, M.M. Ahadian, M.R. Hormozi Nezhad, Eur. Phys. J. Appl. Phys. 48, 10601 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    A.A. Ashkarran, A. Iraji Zad, S.M. Mahdavi, M.M. Ahadian, Appl. Phys. A 100, 1097 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Ashkarran, J. Clust. Sci. 22, 233 (2011) CrossRefGoogle Scholar
  22. 22.
    A.A. Ashkarraṇ, S.A. Ahmadi Afshar, S.M. Aghigh, M. Kavianipour, Polyhedron 29, 1370 (2010) CrossRefGoogle Scholar
  23. 23.
    R. Georgekutty, M.K. Seery, S.C. Pillai, J. Phys. Chem. C 112, 13563 (2008) CrossRefGoogle Scholar
  24. 24.
    D. Briggs, M.P. Seah (eds.), Practical Surface Analysis-Auger and X-ray Photoelectron Spectroscopy, 2nd edn. (Wiley Interscience, New York, 1990) Google Scholar
  25. 25.
    D.L. Liao, C.A. Badour, B.Q. Liao, J. Photochem. Photobiol. A, Chem. 194, 11 (2008) CrossRefGoogle Scholar
  26. 26.
    A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations