Skip to main content
Log in

Correlation between electrical transport, microstructure and room temperature ferromagnetism in 200 keV Ni2+ ion implanted zinc oxide (ZnO) thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report variable temperature resistivity measurements and mechanisms related to electrical conduction in 200 keV Ni2+ ion implanted ZnO thin films deposited by vapor phase transport. The dc electrical resistivity versus temperature curves show that all polycrystalline ZnO films are semiconducting in nature. In the room temperature range they exhibit band conduction and conduction due to thermionic emission of electrons from grain boundaries present in the polycrystalline films. In the low temperature range, nearest neighbor hopping (NNH) and variable range hopping (VRH) conduction are observed. The detailed conduction mechanism of these films and the effects of grain boundary (GB) barriers on the electrical conduction process are discussed. An attempt is made to correlate electrical conduction behavior and previously observed room temperature ferromagnetism of these films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.A. Kröger, The Chemistry of Imperfect Crystals, 2nd edn. (North Holland, Amsterdam, 1974)

    Google Scholar 

  2. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976), Chap. 4

    Google Scholar 

  3. J.W. Orton, M.J. Powell, Rep. Prog. Phys. 43, 1263 (1980)

    Article  ADS  Google Scholar 

  4. L.L. Kazmerski, Polycrystalline and Amorphous Thin Films & Devices (Academic Press, New York, 1980)

    Google Scholar 

  5. Y. Natsume, H. Sakata, T. Hirayama, H. Yanagida, J. Appl. Phys. 72, 4202 (1992)

    Article  ADS  Google Scholar 

  6. A.P. Roth, D.F. Williams, J. Appl. Phys. 52, 6686 (1981)

    ADS  Google Scholar 

  7. R.L. Petritz, Phys. Rev. 104, 1508 (1956)

    Article  ADS  Google Scholar 

  8. Y. Natsume, H. Sakata, Thin Solid Films 372, 30 (2000)

    Article  ADS  Google Scholar 

  9. B. Pandey, S. Ghosh, P. Srivastava, P. Kumar, D. Kanjilal, J. Appl. Phys. 105, 033909 (2009)

    Article  ADS  Google Scholar 

  10. B. Pandey, S. Ghosh, P. Srivastava, D. Kanjilal, P. Kumar, S. Zhou, H. Schmidt, J. Appl. Phys. 107, 023901 (2010)

    Article  ADS  Google Scholar 

  11. R. Kumar, N. Khare, Thin Solid Films 516, 1302 (2008)

    Article  ADS  Google Scholar 

  12. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  ADS  Google Scholar 

  13. J. Han, M. Shen, W. Cao, A.M.R. Senos, P.Q. Mantas, Appl. Phys. Lett. 82, 67 (2003)

    Article  ADS  Google Scholar 

  14. A. Miller, E. Abrahams, Phys. Rev. 120, 745 (1960)

    Article  ADS  MATH  Google Scholar 

  15. S. Bandyopadhyay, G.K. Paul, R. Roy, S.K. Sen, S. Sen, Mater. Chem. Phys. 74, 83 (2002)

    Article  Google Scholar 

  16. Y.Z. Yoo, T. Fukumura, Z. Jin, K. Hasegawa, M. Kawasaki, P. Ahmet, T. Chikyow, H. Koinuma, J. Appl. Phys. 90, 4246 (2001)

    Article  ADS  Google Scholar 

  17. O.D. Jayakumar, I.K. Gopalakrishnan, S.K. Kulshreshtha, J. Mater. Chem. 15, 3514 (2005)

    Article  Google Scholar 

  18. F.A. Padovani, R. Stratton, Solid-State Electron. 9, 695 (1966)

    Article  ADS  Google Scholar 

  19. C.R. Crowell, V.L. Rideout, Solid-State Electron. 12, 89 (1969)

    Article  ADS  Google Scholar 

  20. A. Hausmann, W. Teuerle, Z. Phys. 257, 299 (1972)

    Article  ADS  Google Scholar 

  21. D.C. Reynolds, C.W. Litton, T.C. Collins, Phys. Status Solidi 12, 3 (1965)

    Article  Google Scholar 

  22. A.R. Hutson, J. Appl. Phys. 32, 2287 (1961)

    Article  ADS  Google Scholar 

  23. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968)

    Article  ADS  Google Scholar 

  24. W. Yu, L.H. Yang, X.Y. Teng, J.C. Zhang, L. Zhang, G.S. Fu, J. Appl. Phys. 103, 093901 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Neeraj Khare, IIT Delhi for various important discussions. One of the authors (B. Joshi) gratefully acknowledges the financial support from Department of Science and Technology (DST) and University Grants Commission (UGC), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, B., Ghosh, S., Srivastava, P. et al. Correlation between electrical transport, microstructure and room temperature ferromagnetism in 200 keV Ni2+ ion implanted zinc oxide (ZnO) thin films. Appl. Phys. A 107, 393–400 (2012). https://doi.org/10.1007/s00339-012-6785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6785-x

Keywords

Navigation