Skip to main content
Log in

Free-standing optoelectronic graphene–CdS–graphene oxide composite paper produced by vacuum-assisted self-assembly

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Free-standing optoelectronic graphene–CdS–graphene oxide (G–CdS–GO) composite papers were prepared by vacuum-assisted self-assembly. G–CdS hybrids were first prepared by a hydrothermal method and GO acts as a dispersant which makes it easier to disperse them to form relatively stable aqueous suspensions for fabricating paper. Transmission electron microscopy shows that CdS quantum dots (QDs) with an average size of approximately 1–2 nm were distributed uniformly on the graphene sheets. Photoluminescence measurements for the as-prepared G–CdS–GO composite paper showed that the surface defect related emissions of attached CdS QDs decrease and blue shift obviously due to the change in particle size and the interaction of the surface of the CdS QDs with both the GO and the graphene sheets. The resulting paper holds great potential for applications in thin film solar cells, sensors, diodes, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 4
Fig. 3
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  2. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  3. P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007)

    Article  ADS  Google Scholar 

  4. Y. Geng, S.J. Wang, J.K. Kim, J. Colloid Interface Sci. 2, 592 (2009)

    Article  Google Scholar 

  5. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  6. G.X. Wang, X.P. Shen, B. Wang, J.N. Yao, J.S. Park, Carbon 47, 2054 (2009)

    Article  Google Scholar 

  7. Z.P. Xu, Q.S. Zheng, G.H. Chen, Appl. Phys. Lett. 90, 223115 (2007)

    Article  ADS  Google Scholar 

  8. J.S. Bunch, Y. Yaish, M. Brink, K. Bolotin, P.L. McEuen, Nano Lett. 5, 287 (2005)

    Article  ADS  Google Scholar 

  9. N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Nature 448, 571 (2007)

    Article  ADS  Google Scholar 

  10. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  11. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  12. Q.K. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Appl. Phys. Lett. 93, 113113 (2008)

    Article  ADS  Google Scholar 

  13. W. Xu, H.M. Dong, L.L. Li, J.Q. Yao, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 82, 125304 (2010)

    Article  ADS  Google Scholar 

  14. Z.G. Cheng, Q. Li, Z.J. Li, Q.Y. Zhou, Y. Fang, Nano Lett. 10, 1864 (2010)

    Article  ADS  Google Scholar 

  15. Z.S. Wu, W.C. Ren, D.W. Wang, F. Li, B.L. Liu, H.M. Cheng, ACS Nano 4, 5835 (2010)

    Article  Google Scholar 

  16. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’homme, L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008)

    Article  ADS  Google Scholar 

  17. J.L. Vickery, A.J. Patil, S. Mann, Adv. Mater. 21, 2180 (2009)

    Article  Google Scholar 

  18. J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J.X. Huang, J. Am. Chem. Soc. 132, 8180 (2010)

    Article  Google Scholar 

  19. V.C. Tung, J.H. Huang, I. Tevis, F. Kim, J. Kim, C.W. Chu, S.I. Stupp, J.X. Huang, J. Am. Chem. Soc. 133, 4940 (2011)

    Article  Google Scholar 

  20. L.L. Tian, P. Anilkumar, L. Cao, C.Y. Kong, M.J. Meziani, H.J. Qian, L.M. Veca, T.J. Thorne, K.N. Tackett, T. Edwards, Y.P. Sun, ACS Nano 5, 3052 (2011)

    Article  Google Scholar 

  21. N. Patra, Y.B. Song, P. Kral, ACS Nano 5, 1798 (2011)

    Article  Google Scholar 

  22. C. Zhang, L.L. Ren, X.Y. Wang, T.X. Liu, J. Phys. Chem. C 114, 11435 (2010)

    Article  Google Scholar 

  23. D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, J. Liu, ACS Nano 3, 907 (2009)

    Article  Google Scholar 

  24. O. Akhavan, ACS Nano 4, 4174 (2010)

    Article  Google Scholar 

  25. A.N. Cao, Z. Liu, S.S. Chu, M.H. Wu, Z.M. Ye, Z.W. Cai, Y.L. Chang, S.F. Wang, Q.H. Gong, Y.F. Liu, Adv. Mater. 21, 1 (2009)

    Article  Google Scholar 

  26. D.Y. Pan, J.C. Zhang, Z. Li, M.H. Wu, Adv. Mater. 22, 734 (2010)

    Article  Google Scholar 

  27. P. Wang, T.F. Jiang, C.Z. Zhu, Y.M. Zhai, D.J. Wang, S.J. Dong, Nano Res. 3, 794 (2010)

    Article  Google Scholar 

  28. Y. Wang, H.B. Yao, X.H. Wang, S.H. Yu, J. Mater. Chem. 21, 562 (2011)

    Article  Google Scholar 

  29. T.A. Pham, B.C. Choi, Y.T. Jeong, Nanotechnology 21, 603 (2010)

    Article  Google Scholar 

  30. Z.S. Lu, C.X. Guo, H.B. Yang, Y. Qiao, J. Guo, C.M. Li, J. Colloid Interface Sci. 2, 588 (2011)

    Article  Google Scholar 

  31. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Chem. Mater. 11, 771 (1999)

    Article  Google Scholar 

  32. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  33. W. Lv, D.M. Tang, Y.B. He, C.H. You, Z.Q. Shi, X.C. Chen, C.M. Chen, P.X. Hou, C. Liu, Q.H. Yang, ACS Nano 3, 3730 (2009)

    Article  Google Scholar 

  34. Y.Z. Liu, Y.F. Li, Y.G. Yang, Y.F. Wen, M.Z. Wang, New Carbon Mater. 26, 41 (2011)

    Google Scholar 

  35. C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, Carbon 48, 2054 (2009)

    Article  Google Scholar 

  36. Y.F. Li, Y.Z. Liu, W.Z. Shen, Y.G. Yang, Y.F. Wen, M.Z. Wang, Mater. Lett. 65, 2518 (2011)

    Article  Google Scholar 

  37. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1, 73 (2010)

    Article  Google Scholar 

  38. G.X. Wang, J. Yang, J. Park, X.L. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C 112, 8192 (2008)

    Article  Google Scholar 

  39. Z.Z. Sun, S. Kohama, Z.X. Zhang, J.R. Lomeda, J.M. Tour, Nano Res. 3, 117 (2010)

    Article  Google Scholar 

  40. C.Z. Zhu, S.J. Guo, Y.X. Fang, S.J. Dong, ACS Nano 4, 2429 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 973 project of China (2011CB605600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Zhen Liu or Yong-Gang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YF., Liu, YZ., Shen, WZ. et al. Free-standing optoelectronic graphene–CdS–graphene oxide composite paper produced by vacuum-assisted self-assembly. Appl. Phys. A 106, 779–784 (2012). https://doi.org/10.1007/s00339-012-6774-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6774-0

Keywords

Navigation