Skip to main content
Log in

Effect of biaxial strain on the band gap of wurtzite Al x Ga1−x N

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

First-principles calculations are applied to investigate the effect of biaxial strain on the band gap of wurtzite Al x Ga1−x N. The band gap and band gap bowing parameter increase with compressive strain and decrease with tensile strain. The strain-induced changes in the band gap of Al x Ga1−x N are linear in the strain range of about −1% to 1% while the linearity is invalid out of the range. The linear coefficient B(x), characterizing the relationship between the band gap and the biaxial stress, with a quadratic form is obtained. The value of the band gap bowing parameter decreases from 1.0 eV for −2% strain to 0.91 eV for unstrained and to 0.67 eV for 2% strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Nakamura, Science 281, 956 (1998)

    Article  Google Scholar 

  2. Y. Taniyasu, M. Kasu, T. Makimoto, Nature (London) 441, 325 (2006)

    Article  ADS  Google Scholar 

  3. M.A. Khan, J.N. Kuznia, J.M. Van Hove, D.T. Olson, Appl. Phys. Lett. 59, 1449 (1991)

    Article  ADS  Google Scholar 

  4. C.H. Kuo, S.J. Chang, Y.K. Su, L.W. Wu, J.K. Sheu, T.C. Wen, W.C. Lai, J.M. Tsai, S.C. Chen, J. Electron. Mater. 32, 415 (2003)

    Article  ADS  Google Scholar 

  5. E. Monroy, F. Calle, E. Muñoz, F. Omnès, Appl. Phys. Lett. 74, 3401 (1999)

    Article  ADS  Google Scholar 

  6. H. Hirayama, Y. Tsukada, T. Maeda, N. Kamata, Appl. Phys. Express 3, 031002 (2010)

    Article  ADS  Google Scholar 

  7. C.P. Kuo, S.K. Vong, R.M. Cohen, G.B. Stringfellow, J. Appl. Phys. 57, 5428 (1985)

    Article  ADS  Google Scholar 

  8. S.L. Chuang, C.S. Chang, Phys. Rev. B 54, 2491 (1996)

    Article  ADS  Google Scholar 

  9. D.G. Zhao, S.J. Xu, M.H. Xie, S.Y. Tong, Appl. Phys. Lett. 83, 677 (2003)

    Article  ADS  Google Scholar 

  10. H.P. He, F. Zhuge, Z.Z. Ye, L.P. Zhu, F.Z. Wang, B.H. Zhao, J.Y. Huang, J. Appl. Phys. 99, 023503 (2006)

    Article  ADS  Google Scholar 

  11. N. Khan, J. Lia, Appl. Phys. Lett. 89, 151916 (2006)

    Article  ADS  Google Scholar 

  12. Z. Dridi, B. Bouhafs, P. Ruterana, New J. Phys. 4, 94.1 (2002)

    Article  Google Scholar 

  13. V.Yu. Davydov, N.S. Averkiev, I.N. Goncharuk, D.K. Nelson, I.P. Nikitina, A.S. Polkovnikov, A.N. Smirnov, M.A. Jacobson, J. Appl. Phys. 82, 5097 (1997)

    Article  ADS  Google Scholar 

  14. I.-H. Lee, I.-H. Choi, C.R. Lee, S.K. Noha, Appl. Phys. Lett. 71, 1359 (1997)

    Article  ADS  Google Scholar 

  15. K. Wan, A.A. Porporati, G. Feng, H. Yang, G. Pezzottia, Appl. Phys. Lett. 88, 251910 (2006)

    Article  ADS  Google Scholar 

  16. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  17. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  18. V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Int. J. Quant. Chem. 77, 895 (2000)

    Article  Google Scholar 

  19. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 675 (2003)

    Article  Google Scholar 

  20. S. Yang, D. Prendergast, J.B. Neaton, Appl. Phys. Lett. 98, 152108 (2011)

    Article  ADS  Google Scholar 

  21. B.-T. Liou, Appl. Phys. A 86, 539 (2007)

    Article  ADS  Google Scholar 

  22. S.R. Lee, A.F. Wright, M.H. Crawford, G.A. Petersen, J. Han, R.M. Biefeld, Appl. Phys. Lett. 74, 3344 (1999)

    Article  ADS  Google Scholar 

  23. M.Z. Peng, L.W. Guo, J. Zhang, N.S. Yu, X.L. Zhu, J.F. Yan, Y. Wang, H.Q. Jia, H. Chen, J.M. Zhou, J. Cryst. Growth 307, 289 (2007)

    Article  ADS  Google Scholar 

  24. F. Yun, M.A. Reshchikov, L. He, T. King, H. Morkoç, S.W. Novak, L. Wei, J. Appl. Phys. 92, 4837 (2002)

    Article  ADS  Google Scholar 

  25. N. Nepal, J. Li, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 87, 242104 (2005)

    Article  ADS  Google Scholar 

  26. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, M. Stutzmann, J. Appl. Phys. 82, 5090 (1997)

    Article  ADS  Google Scholar 

  27. W. Shan, J.W. Ager, K.M. Yu, W. Walukiewicz, E.E. Haller, M.C. Martin, W.R. McKinney, W. Yang, J. Appl. Phys. 85, 8505 (1999)

    Article  ADS  Google Scholar 

  28. O. Katz, B. Meyler, U. Tisch, J. Salzman, Phys. Status Solidi A 188, 789 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Council of Taiwan under grant NSC 98-2112-M-164-002-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Ting Liou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liou, BT., Kuo, YK. Effect of biaxial strain on the band gap of wurtzite Al x Ga1−x N. Appl. Phys. A 106, 1013–1016 (2012). https://doi.org/10.1007/s00339-012-6772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6772-2

Keywords

Navigation