Skip to main content
Log in

Hydrothermal synthesis and electrochemical properties of α-MoO3 nanobelts used as cathode materials for Li-ion batteries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Uniform α-MoO3 nanobelts were successfully synthesized by the hydrothermal process at 180°C for 20 h of the acidic solutions with different pH values of 0–0.75, adjusted using HCl (conc.). XRD and SEM results revealed that the pH of the precursor solutions played an important role in the phase, impurities, and morphology of the products. At the pH=0, the perfect α-MoO3 nanobelts with a few tens of microns long were synthesized. By the TEM characterization, orthorhombic MoO3 has a distinctive layered structure along the [010] direction, consisting of distorted MoO6 octahedrons connected by common corners along the [100] direction and common edges along the [001] direction. The electrochemical measurement showed that the α-MoO3 nanobelts have high specific charge capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.C. Yang, Q.S. Gao, Y. Tang, Y.P. Wu, R. Holze, J. Power Sources 179, 357–360 (2008)

    Article  Google Scholar 

  2. H. Habazaki, M. Kiriu, H. Konno, Electrochem. Commun. 8, 1275–1279 (2006)

    Article  Google Scholar 

  3. W.T. Jeong, J.H. Joo, K.S. Lee, J. Alloys Compd. 358, 294–301 (2003)

    Article  Google Scholar 

  4. A. Phuruangrat, T. Thongtem, S. Thongtem, Mater. Lett. 61, 3805–3808 (2007)

    Article  Google Scholar 

  5. M.G. Kim, J. Cho, Adv. Funct. Mater. 19, 1497–1514 (2009)

    Article  Google Scholar 

  6. Y. Cai, S. Liu, X. Yin, Q. Hao, M. Zhang, T. Wang, Physica E 43, 70–75 (2010)

    Article  ADS  Google Scholar 

  7. M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Angew. Chem., Int. Ed. 46, 750–753 (2007)

    Article  Google Scholar 

  8. Ch.V.S. Reddy, E.H. Walker Jr., C. Wen, S. Mho, J. Power Sources 183, 330–333 (2008)

    Article  Google Scholar 

  9. J.W. Bullard III, R.L. Smith, Solid State Ion. 160, 335–349 (2003)

    Article  Google Scholar 

  10. L. Zheng, Y. Xu, D. Jin, Y. Xie, Chem. Mater. 21, 5681–5690 (2009)

    Article  Google Scholar 

  11. Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073-3273, USA (2001)

  12. S. Wang, Y. Zhang, X. Ma, W. Wang, X. Li, Z. Zhang, Y. Qian, Solid State Commun. 136, 283–287 (2005)

    Article  ADS  Google Scholar 

  13. Q.P. Ding, H.B. Huang, J.H. Duan, J.F. Gong, S.G. Yang, X.N. Zhao, Y.W. Du, J. Cryst. Growth 294, 304–308 (2006)

    Article  ADS  Google Scholar 

  14. D. Liu, W.W. Lei, J. Hao, D.D. Liu, B.B. Liu, X. Wang, X.H. Chen, Q.L. Cui, G.T. Zou, J. Liu, S. Jiang, J. Appl. Phys. 105, 023513 (2009)

    Article  ADS  Google Scholar 

  15. X. Chen, W. Lei, D. Liu, J. Hao, Q. Cui, G. Zou, J. Phys. Chem. C 113, 21582–21585 (2009)

    Article  Google Scholar 

  16. S. Phadungdhitidhada, P. Mangkorntong, S. Choopun, N. Mangkorntong, Ceram. Int. 34, 1121–1125 (2008)

    Article  Google Scholar 

  17. T. Siciliano, A. Tepore, E. Filippo, G. Micocci, M. Tepore, Mater. Chem. Phys. 114, 687–691 (2009)

    Article  Google Scholar 

  18. K. Kalantar-zadeh, J. Tang, M. Wang, K.L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski, R.B. Kaner, Nanoscale 2, 429–433 (2010)

    Article  ADS  Google Scholar 

  19. J.V. Silveira, J.A. Batista, G.D. Saraiva, J.M. Filho, A.G.S. Filho, S. Hue, X. Wang, Vib. Spectrosc. 54, 179–183 (2010)

    Article  Google Scholar 

  20. T. Xia, Q. Li, X. Liu, J. Meng, X. Cao, J. Phys. Chem. B 110, 2006–2012 (2006)

    Article  Google Scholar 

  21. I.B. Troitskaia, T.A. Gavrilova, S.A. Gromilov, D.V. Sheglov, V.V. Atuchin, R.S. Vemuri, C.V. Ramana, Mater. Sci. Eng. B 174, 159–163 (2010)

    Article  Google Scholar 

  22. K.W. Andrews, D.J. Dyson, S.R. Keown, Interpretation of Electron Diffraction Patterns (Plenum, New York, 1971)

    Google Scholar 

  23. Y. Keereeta, T. Thongtem, S. Thongtem, J. Alloys Compd. 509, 6689–6695 (2011)

    Article  Google Scholar 

  24. G. Wei, W. Qin, D. Zhang, G. Wang, R. Kim, K. Zheng, L. Wang, J. Alloys Compd. 481, 417–421 (2009)

    Article  Google Scholar 

  25. M.S. Park, Y.M. Kang, G.X. Wang, S.X. Dou, H.K. Liu, Adv. Funct. Mater. 18, 455–461 (2008)

    Article  Google Scholar 

  26. L. Mai, B. Hu, Y. Qi, Y. Dai, W. Chen, Int. J. Electrochem. Sci. 3, 216–222 (2008)

    Google Scholar 

  27. T.M. McEvoy, K.J. Stevenson, J.T. Hupp, X. Dang, Langmuir 19, 4316–4326 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency for providing financial support through the project P-10-11345, the Thailand’s Office of the Higher Education Commission through the National Research University (NRU) Project, and the Thailand Research Fund through the TRF Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anukorn Phuruangrat or Titipun Thongtem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phuruangrat, A., Chen, J.S., Lou, X.W. et al. Hydrothermal synthesis and electrochemical properties of α-MoO3 nanobelts used as cathode materials for Li-ion batteries. Appl. Phys. A 107, 249–254 (2012). https://doi.org/10.1007/s00339-012-6771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6771-3

Keywords

Navigation