Applied Physics A

, Volume 107, Issue 1, pp 249–254 | Cite as

Hydrothermal synthesis and electrochemical properties of α-MoO3 nanobelts used as cathode materials for Li-ion batteries

  • Anukorn PhuruangratEmail author
  • Jun Song Chen
  • Xiong Wen Lou
  • Oranuch Yayapao
  • Somchai Thongtem
  • Titipun ThongtemEmail author


Uniform α-MoO3 nanobelts were successfully synthesized by the hydrothermal process at 180°C for 20 h of the acidic solutions with different pH values of 0–0.75, adjusted using HCl (conc.). XRD and SEM results revealed that the pH of the precursor solutions played an important role in the phase, impurities, and morphology of the products. At the pH=0, the perfect α-MoO3 nanobelts with a few tens of microns long were synthesized. By the TEM characterization, orthorhombic MoO3 has a distinctive layered structure along the [010] direction, consisting of distorted MoO6 octahedrons connected by common corners along the [100] direction and common edges along the [001] direction. The electrochemical measurement showed that the α-MoO3 nanobelts have high specific charge capacity.


MoO3 Precursor Solution Irreversible Capacity Molybdenum Trioxide Specific Charge Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank the National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency for providing financial support through the project P-10-11345, the Thailand’s Office of the Higher Education Commission through the National Research University (NRU) Project, and the Thailand Research Fund through the TRF Research Grant.


  1. 1.
    L.C. Yang, Q.S. Gao, Y. Tang, Y.P. Wu, R. Holze, J. Power Sources 179, 357–360 (2008) CrossRefGoogle Scholar
  2. 2.
    H. Habazaki, M. Kiriu, H. Konno, Electrochem. Commun. 8, 1275–1279 (2006) CrossRefGoogle Scholar
  3. 3.
    W.T. Jeong, J.H. Joo, K.S. Lee, J. Alloys Compd. 358, 294–301 (2003) CrossRefGoogle Scholar
  4. 4.
    A. Phuruangrat, T. Thongtem, S. Thongtem, Mater. Lett. 61, 3805–3808 (2007) CrossRefGoogle Scholar
  5. 5.
    M.G. Kim, J. Cho, Adv. Funct. Mater. 19, 1497–1514 (2009) CrossRefGoogle Scholar
  6. 6.
    Y. Cai, S. Liu, X. Yin, Q. Hao, M. Zhang, T. Wang, Physica E 43, 70–75 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Angew. Chem., Int. Ed. 46, 750–753 (2007) CrossRefGoogle Scholar
  8. 8.
    Ch.V.S. Reddy, E.H. Walker Jr., C. Wen, S. Mho, J. Power Sources 183, 330–333 (2008) CrossRefGoogle Scholar
  9. 9.
    J.W. Bullard III, R.L. Smith, Solid State Ion. 160, 335–349 (2003) CrossRefGoogle Scholar
  10. 10.
    L. Zheng, Y. Xu, D. Jin, Y. Xie, Chem. Mater. 21, 5681–5690 (2009) CrossRefGoogle Scholar
  11. 11.
    Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073-3273, USA (2001) Google Scholar
  12. 12.
    S. Wang, Y. Zhang, X. Ma, W. Wang, X. Li, Z. Zhang, Y. Qian, Solid State Commun. 136, 283–287 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    Q.P. Ding, H.B. Huang, J.H. Duan, J.F. Gong, S.G. Yang, X.N. Zhao, Y.W. Du, J. Cryst. Growth 294, 304–308 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    D. Liu, W.W. Lei, J. Hao, D.D. Liu, B.B. Liu, X. Wang, X.H. Chen, Q.L. Cui, G.T. Zou, J. Liu, S. Jiang, J. Appl. Phys. 105, 023513 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    X. Chen, W. Lei, D. Liu, J. Hao, Q. Cui, G. Zou, J. Phys. Chem. C 113, 21582–21585 (2009) CrossRefGoogle Scholar
  16. 16.
    S. Phadungdhitidhada, P. Mangkorntong, S. Choopun, N. Mangkorntong, Ceram. Int. 34, 1121–1125 (2008) CrossRefGoogle Scholar
  17. 17.
    T. Siciliano, A. Tepore, E. Filippo, G. Micocci, M. Tepore, Mater. Chem. Phys. 114, 687–691 (2009) CrossRefGoogle Scholar
  18. 18.
    K. Kalantar-zadeh, J. Tang, M. Wang, K.L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski, R.B. Kaner, Nanoscale 2, 429–433 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    J.V. Silveira, J.A. Batista, G.D. Saraiva, J.M. Filho, A.G.S. Filho, S. Hue, X. Wang, Vib. Spectrosc. 54, 179–183 (2010) CrossRefGoogle Scholar
  20. 20.
    T. Xia, Q. Li, X. Liu, J. Meng, X. Cao, J. Phys. Chem. B 110, 2006–2012 (2006) CrossRefGoogle Scholar
  21. 21.
    I.B. Troitskaia, T.A. Gavrilova, S.A. Gromilov, D.V. Sheglov, V.V. Atuchin, R.S. Vemuri, C.V. Ramana, Mater. Sci. Eng. B 174, 159–163 (2010) CrossRefGoogle Scholar
  22. 22.
    K.W. Andrews, D.J. Dyson, S.R. Keown, Interpretation of Electron Diffraction Patterns (Plenum, New York, 1971) Google Scholar
  23. 23.
    Y. Keereeta, T. Thongtem, S. Thongtem, J. Alloys Compd. 509, 6689–6695 (2011) CrossRefGoogle Scholar
  24. 24.
    G. Wei, W. Qin, D. Zhang, G. Wang, R. Kim, K. Zheng, L. Wang, J. Alloys Compd. 481, 417–421 (2009) CrossRefGoogle Scholar
  25. 25.
    M.S. Park, Y.M. Kang, G.X. Wang, S.X. Dou, H.K. Liu, Adv. Funct. Mater. 18, 455–461 (2008) CrossRefGoogle Scholar
  26. 26.
    L. Mai, B. Hu, Y. Qi, Y. Dai, W. Chen, Int. J. Electrochem. Sci. 3, 216–222 (2008) Google Scholar
  27. 27.
    T.M. McEvoy, K.J. Stevenson, J.T. Hupp, X. Dang, Langmuir 19, 4316–4326 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anukorn Phuruangrat
    • 1
    Email author
  • Jun Song Chen
    • 2
  • Xiong Wen Lou
    • 2
  • Oranuch Yayapao
    • 3
  • Somchai Thongtem
    • 4
    • 5
  • Titipun Thongtem
    • 3
    • 5
    Email author
  1. 1.Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversityHat YaiThailand
  2. 2.Division of Bioengineering, School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  4. 4.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  5. 5.Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations