Skip to main content

Rapid and enhanced functionalization of MWCNTs in a dielectric barrier discharge plasma in presence of diluted CO2

Abstract

Multiwalled carbon nanotubes (MWCNTs) have been functionalized in dielectric barrier discharge (DBD) plasma in presence of a mixture of carbon dioxide and a diluent gas at room temperature and atmospheric pressure. He, Ar, and N2 were examined as the diluent gases. Temperature-programmed desorption was used to investigate the influence of various plasma parameters and type of diluent gas as well as the amount of diluent in the plasma gas. It is found that the quantity of functional groups on the surface of MWCNTs is a maximum when He is used as diluent gas. It also passes through a maximum when He content is 60%. The presence of He improves the reactivity of the plasma, which leads to an increase in the quantity of functional groups. However, high percentages of He decrease the CO2 content, which in turn decreases the number of functional groups. FTIR and Raman spectroscopy showed the presence of Oxygen-containing functional groups on MWCNTs surfaces.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. M. Moniruzzaman, K.I. Winey, Macromolecules 39, 5194 (2006)

    Article  ADS  Google Scholar 

  3. A. Bianco, K. Kostarelos, M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005)

    Article  Google Scholar 

  4. D. Vairavapandian, P. Vichchulada, M.D. Lay, Anal. Chim. Acta 626, 119 (2008)

    Article  Google Scholar 

  5. G.P. Rao, C. Lu, F. Su, Sep. Purif. Technol. 58, 224 (2007)

    Article  Google Scholar 

  6. Y.P. Sun, K. Fu, Y. Lin, W. Huang, Acc. Chem. Res. 35, 1096 (2002)

    Article  Google Scholar 

  7. Y. Lin, M.J. Meziani, Y.P. Sun, J. Mater. Chem. 17, 1143 (2007)

    Article  Google Scholar 

  8. H. Dai, Acc. Chem. Res. 35, 1035 (2002)

    Article  Google Scholar 

  9. S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G.R.K. Naidu, H.Y. Lee, T. Kawai, Sens. Actuators B 122, 672 (2007)

    Article  Google Scholar 

  10. Z.N. Utegulov, D.B. Mast, P. He, D. Shi, R.F. Gilland, J. Appl. Phys. 97, 104324 (2005)

    Article  ADS  Google Scholar 

  11. A. Curulli, S.N. Cesaro, A. Coppe, C. Silvestri, G. Palleschi, Mikrochim. Acta 152, 225 (2006)

    Article  Google Scholar 

  12. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, J. Phys. Chem. B 107, 3712 (2003)

    Article  Google Scholar 

  13. F. Pourfayaz, A.A. Khodadadi, Y. Mortazavi, S.-H. Jafari, Plasma Process. Polym. 7, 1001 (2010)

    Article  Google Scholar 

  14. Y. Pan, L. Li, S.H. Chan, J. Zhao, Composites, Part A, Appl. Sci. Manuf. 41, 419 (2010)

    Article  Google Scholar 

  15. Y.J. Kim, T.S. Shin, H.D. Choi, J.H. Kwon, Y.C. Chung, H.G. Yoon, Carbon 43, 23 (2005)

    Article  Google Scholar 

  16. T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. Mclaughlin, N.M.D. Brown, Carbon 43, 2951 (2005)

    Article  Google Scholar 

  17. A. Felten, C. Bittencourt, J.J. Pireaux, G. Van Lier, J.C. Charlier, J. Appl. Phys. 98, 074308 (2005)

    Article  ADS  Google Scholar 

  18. J.A. Kim, D.G. Seong, T.J. Kang, J.R. Youn, Carbon 44, 898 (2006)

    Google Scholar 

  19. M. Vesali-Naseh, A.A. Khodadadi, Y. Mortazavi, F. Pourfayaz, O. Alizadeh, M. Maghrebi, Carbon 48, 1369 (2010)

    Article  Google Scholar 

  20. M. Ataeefard, S. Moradian, M. Mirabedini, M. Ebrahimi, S. Asiaban, Plasma Chem. Plasma Process. 28, 377 (2008)

    Article  Google Scholar 

  21. H.L. Chen, H.M. Lee, M.B. Chang, Plasma Process. Polym. 3, 682 (2006)

    Article  Google Scholar 

  22. Z. Gu, H. Peng, R.H. Hauge, R.E. Smalley, J.L. Margrave, Nano Lett. 2, 1009 (2002)

    Article  ADS  Google Scholar 

  23. H.P. Boehm, Carbon 40, 145 (2002)

    Article  Google Scholar 

  24. S.A. Manafi, M.H. Amin, M.R. Rahimipour, E. Salahi, A. Kazemzadeh, Nanoscale Res. Lett. 4, 296 (2009)

    Article  ADS  Google Scholar 

  25. C. Vix-Guterl, M. Couzi, J. Dentzer, M. Trinquecoste, P. Delhaes, J. Phys. Chem. B 108, 19361 (2004)

    Article  Google Scholar 

  26. E. Dervishi, Z. Li, F. Watanabe, Y. Xu, V. Saini, A.R. Biris, A.S. Biris, J. Mater. Chem. 19, 3004 (2009)

    Article  Google Scholar 

  27. T. Xu, J. Yang, J. Liu, Q. Fu, Appl. Surf. Sci. 253, 8945 (2007)

    Article  ADS  Google Scholar 

  28. H.M.S. Tarverdi, Y. Mortazavi, A.A. Khodadadi, Iran. J. Chem. Chem. Eng. 24, 63 (2005)

    Google Scholar 

  29. S.L. Brock, M. Marquez, S.L. Suib, Y. Hayashi, H. Matsumoto, J. Catal. 180, 225 (1998)

    Article  Google Scholar 

  30. I. Maezono, J.S. Chang, IEEE Trans. Ind. Appl. 26, 651 (1990)

    Article  Google Scholar 

  31. L.J. Figueiredo, M.F.R. Pereira, Catal. Today 150, 2 (2010)

    Article  Google Scholar 

  32. G.S. Szymanski, Z. Karpinski, S. Biniak, A. Swiatkowski, Carbon 40, 2627 (2002)

    Article  Google Scholar 

  33. J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, W.K. Yuan, Carbon 45, 785 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ali Khodadadi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pourfayaz, F., Mortazavi, Y., Khodadadi, A.A. et al. Rapid and enhanced functionalization of MWCNTs in a dielectric barrier discharge plasma in presence of diluted CO2 . Appl. Phys. A 106, 829–836 (2012). https://doi.org/10.1007/s00339-012-6769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6769-x

Keywords

  • Plasma Treatment
  • Dielectric Barrier Discharge
  • Dielectric Barrier Discharge Plasma
  • Excited Species
  • Dielectric Barrier Discharge Reactor